Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Utilization of ADAS for Improving Performance of Coasting in Neutral

2018-04-03
2018-01-0603
It has been discussed in numerous prior studies that in-neutral coasting, or sailing, can accomplish considerable amount of fuel saving when properly used. The driving maneuver basically makes the vehicle sail in neutral gear when propulsion is unnecessary. By disengaging a clutch or shifting the gear to neutral, the vehicle may better utilize its kinetic energy by avoiding dragging from the engine side. This strategy has been carried over to series production recently in some of the vehicles on the market and has become one of the eco-mode features available in current vehicles. However, the duration of coasting must be long enough to attain more fuel economy benefit than Deceleration Fuel Cut-Off (DFCO) - which exists in all current vehicle powertrain controllers - can bring. Also, the transients during shifting back to drive gear can result in a drivability concern.
Technical Paper

Customized Co-Simulation Environment for Autonomous Driving Algorithm Development and Evaluation

2021-04-06
2021-01-0111
Deployment of autonomous vehicles requires an extensive evaluation of developed control, perception, and localization algorithms. Therefore, increasing the implemented SAE level of autonomy in road vehicles requires extensive simulations and verifications in a realistic simulation environment before proving ground and public road testing. The level of detail in the simulation environment helps ensure the safety of a real-world implementation and reduces algorithm development cost by allowing developers to complete most of the validation in the simulation environment. Considering sensors like camera, LiDAR, radar, and V2X used in autonomous vehicles, it is essential to create a simulation environment that can provide these sensor simulations as realistically as possible.
Journal Article

Assessing the Access to Jobs by Shared Autonomous Vehicles in Marysville, Ohio: Modeling, Simulating and Validating

2021-04-06
2021-01-0163
Autonomous vehicles are expected to change our lives with significant applications like on-demand, shared autonomous taxi operations. Considering that most vehicles in a fleet are parked and hence idle resources when they are not used, shared on-demand services can utilize them much more efficiently. While ride hailing of autonomous vehicles is still very costly due to the initial investment, a shared autonomous vehicle fleet can lower its long-term cost such that it becomes economically feasible. This requires the Shared Autonomous Vehicles (SAV) in the fleet to be in operation as much as possible. Motivated by these applications, this paper presents a simulation environment to model and simulate shared autonomous vehicles in a geo-fenced urban setting.
X