Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Technical Paper

High-Fidelity Modeling and Prediction of Hood Buffeting of Trailing Automobiles

2020-03-10
2020-01-5038
The importance of fluid-structure interaction (FSI) is of increasing concern in automotive design criteria as automobile hoods become lighter and thinner. This work focuses on computational simulation and analysis of automobile hoods under unsteady aerodynamic loads encountered at typical highway conditions while trailing another vehicle. These driving conditions can cause significant hood vibrations due to the unsteady loads caused by the vortex shedding from the leading vehicle. The study is carried out using coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) codes. The main goal of this work is to characterize the importance of fluid modeling fidelity to hood buffeting response by comparing fluid and structural responses using both Reynolds-Averaged Navier-Stokes (RANS) and detached eddy simulation (DES) approaches. Results are presented for a sedan trailing another sedan.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Effect of Intake Primary Runner Blockages on Combustion Characteristics and Emissions with Stoichiometric and EGR-diluted Mixtures in SI Engines

2007-10-29
2007-01-3992
In-cylinder charge motion is known to significantly increase turbulence intensity, accelerate combustion rate, and reduce cyclic variation. This, in turn, extends the tolerance to exhaust gas recirculation (EGR), while the introduction of EGR results in much lowered nitrogen oxide (NOx) emissions and reduced fuel consumption. The present study investigates the effect of charge motion in a spark ignition engine on fuel consumption, combustion, and engine-out emissions with stoichiometric and EGR-diluted mixtures under part-load operating conditions. Experiments have been performed with a Chrysler 2.4L 4-valve I4 engine under 2.41 bar brake mean effective pressure at 1600 rpm over a spark range around maximum brake torque timing. The primary intake runners are partially blocked to create different levels of tumble, swirl, and cross-tumble (swumble) motion in the cylinder before ignition.
Technical Paper

The Ohio State University Automated Highway System Demonstration Vehicle

1998-02-23
980855
The Ohio State University Center for Intelligent Transportation Research (CITR) has developed three automated vehicles demonstrating advanced cruise control, automated steering control for lane keeping, and autonomous behavior including automated stopping and lane changes in reaction to other vehicles. Various sensors were used, including a radar reflective stripe system and a vision based system for lane position sensing, a radar system and a scanning laser rangefinding system for the detection of objects ahead of the vehicle, and various supporting sensors including side looking radars and an angular rate gyroscope. These vehicles were demonstrated at the National Automated Highway System Consortium (NAHSC) 1997 Technical Feasibility Demonstration in a scenario involving mixed autonomous and manually driven vehicles. This paper describes the demonstration, the vehicle sensing, control, and computational hardware, and the vehicle control software.
Technical Paper

Combining Flow Losses at Circular T-Junctions Representative of Intake Plenum and Primary Runner Interface

2007-04-16
2007-01-0649
The interface between a plenum and primary runner in log-style intake manifolds is one of the dominant sources of flow losses in the breathing system of Internal Combustion Engines (ICE). A right-angled T-junction is one such interface between the plenum (main duct) and the primary runner (sidebranch) normal to the plenum's axis. The present study investigates losses associated with the combining flow through these junctions, where fluid from both sides of the plenum enters the primary runner. Steady, incompressible-flow experiments for junctions with circular cross-sections were conducted to determine the effect of (1) runner interface radius of 0, 10, and 20% of the plenum diameter, (2) plenum-to-runner area ratio of 1, 2.124, and 3.117, and (3) runner taper area ratio of 2.124 and 3.117. Mass flow rate in each branch was varied to obtain a distribution of flow ratios, while keeping the total flow rate constant.
Technical Paper

Evaluation of a Shock Model for Vehicle Simulation

2007-04-16
2007-01-0845
This paper describes the development of a more accurate shock absorber model in order to obtain better vehicle simulation results. Previous shock models used a single spline to represent shock force versus shock velocity curves. These models produced errors in vehicle simulations because the damper characteristics are better represented by the application of a hysteresis loop in the model. Thus, a new damper model that includes a hysteresis loop is developed using Matlab Simulink. The damper characteristics for the new model were extracted from measurements made on a shock dynamometer. The new model better represents experimental shock data. The new shock model is incorporated into two different lumped-parameter vehicle models: one is a three degree-of-freedom vehicle handling model and the other is a seven degree-of-freedom vehicle ride model. The new damper model is compared with the previous model for different shock mileages (different degrees of wear).
Technical Paper

Parameter Determination and Vehicle Dynamics Modeling for The National Advanced Driving Simulator of the 2006 BMW 330i

2007-04-16
2007-01-0818
The paper discusses the development of a model for the 2006 BMW 330i for the National Advanced Driving Simulator's (NADS) vehicle dynamics simulation, NADSdyna. The front and rear suspensions are independent strut and link type suspensions modeled using recursive rigid-body dynamics formulations. The suspension springs and shock absorbers are modeled as force elements. The paper includes parameters for front and rear semi-empirical tire models used with NADSdyna. Longitudinal and lateral tire force plots are also included. The NADSdyna model provides state-of-the-art high-fidelity handling dynamics for real-time hardware-in-the-loop simulation. The realism of a particular model depends heavily on how the parameters are obtained from the actual physical system. Complex models do not guarantee high fidelity if the parameters used were not properly measured. Methodologies for determining the parameters are detailed in this paper.
Technical Paper

Design and Conduct of Precision Planetary Gear Vibration Experiments

2009-05-19
2009-01-2071
Despite a large body of analytical work characterizing the dynamic motion of planetary gears, supporting experimental data is limited. Experimental results are needed to support computer modeling and offer practical optimization guidelines to gear designers. This paper presents the design and implementation of a test facility and precision test fixtures for accurate measurement of planetary gear vibration at operating conditions. Acceleration measurements are made on all planetary bodies under controlled torque/speed conditions. Custom, high-precision test fixtures accommodate instrumentation, ensure accurate alignment, help isolate gear dynamics, and allow for variability in future testing. Results are compared with finite element and lumped parameter models.
Technical Paper

Application of Model-Based Design Techniques for the Control Development and Optimization of a Hybrid-Electric Vehicle

2009-04-20
2009-01-0143
Model-based design is a collection of practices in which a system model is at the center of the development process, from requirements definition and system design to implementation and testing. This approach provides a number of benefits such as reducing development time and cost, improving product quality, and generating a more reliable final product through the use of computer models for system verification and testing. Model-based design is particularly useful in automotive control applications where ease of calibration and reliability are critical parameters. A novel application of the model-based design approach is demonstrated by The Ohio State University (OSU) student team as part of the Challenge X advanced vehicle development competition. In 2008, the team participated in the final year of the competition with a highly refined hybrid-electric vehicle (HEV) that uses a through-the-road parallel architecture.
Technical Paper

Vehicle to Vehicle Interaction Maneuvers Choreographed with an Automated Test Driver

2009-04-20
2009-01-0440
Modern passenger cars are being equipped with advanced driver assistance systems such as lane departure warning, collision avoidance systems, adaptive cruise control, etc. Testing for operation and effectiveness of these warning systems involves interaction between vehicles. While dealing with multiple moving vehicles, obtaining discriminatory results is difficult due to the difficulty in minimizing variations in vehicle separation and other parameters. This paper describes test strategies involving an automated test driver interacting with another moving vehicle. The autonomous vehicle controls its state (including position and speed) with respect to the target vehicle. Choreographed maneuvers such as chasing and overtaking can be performed with high accuracy and repeatability that even professional drivers have difficulty achieving. The system is also demonstrated to be usable in crash testing.
Technical Paper

Miniaturized Sensor Systems for Early Fire Detection in Spacecraft

2009-07-12
2009-01-2469
A fire in spacecraft or habitat supporting NASA's Exploration mission could jeopardize the system, mission, and/or crew. Given adequate measures for fire prevention, the hazard from a fire can be significantly reduced if fire detection is rapid and occurs in the early stages of fire development. The simultaneous detection of both particulate and gaseous products has been proven to rapidly detect fires and accurately distinguish between real fires and nuisance sources. This paper describes the development status of gaseous and particulate sensor elements, integrated sensor systems, and system testing. It is concluded that while development is still necessary, the fundamental approach of smart, miniaturized, multisensor technology has the potential to significantly improve the safety of NASA space exploration systems.
Technical Paper

Characterization of Vehicle Occupant Compartment Material Properties Using MADYMO: Methodology and Validation

2009-06-09
2009-01-2260
During a motor-vehicle collision, an occupant may interact with a variety of interior structures. The material properties and construction of these structures can directly affect the occupant's kinetic response. Simulation tools such as MADYMO (Mathematical Dynamical Models) can be used to estimate the forces imparted to an occupant for injury mechanism and causation evaluation relative to a particular event. Depending on the impact event and the specific injury mechanism being evaluated, the selection of proper material characteristics can be quite important. A comprehensive literature review of MADYMO studies illustrates the prevalent use of generic material characteristics and the need for improved property estimation and implementation methods.
Technical Paper

The Application of Piezoceramic Actuation to Direct Fuel Injection

2003-09-16
2003-32-0001
With increasing demands to reduce emissions from internal combustion engines, engine manufacturers are forced to seek out new technology. One such technology employed primarily in the diesel and two-stroke engine community is direct-injection (DI). Direct injection has shown promising results in reduction of CO and NOx for both two- and four-stroke engines. While having been used for several years in the diesel industry, direct injection has been scrutinized for an inability to meet future requirements to reduce particulate matter emissions. Direct injection has also came under fire for complicating fuel delivery systems, thus making it cost prohibitive for small utility engine manufacturers. Recent research shows that the application of piezo-driven actuators has a positive effect on soot formation reduction for diesel engines and as this paper will distinguish, has the ability to simplify direct injection fuel delivery systems in general.
Technical Paper

Closed Loop Steering System Model for the National Advanced Driving Simulator

2004-03-08
2004-01-1072
This paper presents the details of the model for the physical steering system used on the National Advanced Driving Simulator. The system is basically a hardware-in-the-loop (steering feedback motor and controls) steering system coupled with the core vehicle dynamics of the simulator. The system's torque control uses cascaded position and velocity feedback and is controlled to provide steering feedback with variable stiffness and dynamic properties. The reference model, which calculates the desired value of the torque, is made of power steering torque, damping function torque, torque from tires, locking limit torque, and driver input torque. The model also provides a unique steering dead-band function that is important for on-center feel. A Simulink model of the hardware/software is presented and analysis of the simulator steering system is provided.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

A Study of Jackknife Stability of Class VIII Vehicles with Multiple Trailers with ABS Disc/Drum Brakes

2004-03-08
2004-01-1741
This study investigated the jackknife stability of Class VIII double tractor-trailer combination vehicles that had mixed braking configurations between the tractor and trailers and dolly (e.g. ECBS disc brakes on the tractor and pneumatic drum brakes on the trailers and dolly). Brake-in-turn maneuvers were performed with varying vehicle loads and surface conditions. Conditions with ABS ON for the entire vehicle (and select-high control algorithm on the trailers and dolly) found that instabilities (i.e. lane excursions and/or jackknifes) were exhibited under conditions when the surface friction coefficient was 0.3. It was demonstrated that these instabilities could be avoided while utilizing a select-low control algorithm on the trailers and dolly. Simulation results with the ABS OFF for the tractor showed that a tractor equipped with disc brakes had greater jackknife stability.
Technical Paper

A Study of Vehicle Response Asymmetries During Severe Driving Maneuvers

2004-03-08
2004-01-1788
During Phase VI of the National Highway Traffic Safety Administration's (NHTSA) Light Vehicle Rollover Research Program, three of the twenty-six light vehicles tested exhibited significant response asymmetries with respect to left versus right steer maneuvers. This paper investigates possible vehicle asymmetric characteristics and unintended inputs that may cause vehicle asymmetric response. An analysis of the field test data, results from suspension and steering parameter measurements, and a summary of a computer simulation study are also given.
Technical Paper

Application of the Extended Kalman Filter to a Planar Vehicle Model to Predict the Onset of Jackknife Instability

2004-03-08
2004-01-1785
The widely used Extended Kalman Filter (EKF) is applied to a planar model of an articulated vehicle to predict jackknifing events. The states of hitch angle and hitch angle rate are estimated using a vehicle model and the available or “measured” states of lateral acceleration and yaw rate from the prime mover. Tuning, performance, and compromises for the EKF in this application are discussed. This application of the EKF is effective in predicting the onset of instability for an articulated vehicle under low-μ and low-load conditions. These conditions have been shown to be most likely to render heavy articulated vehicles vulnerable to jackknife instability. Options for model refinements are also presented.
X