Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Design of a Multi-Chamber Silencer for Turbocharger Noise

2009-05-19
2009-01-2048
A multi-chamber silencer is designed by a computational approach to suppress the turbocharger whoosh noise downstream of a compressor in an engine intake system. Due to the significant levels and the broadband nature of the source spanning over 1.5 – 3.5 kHz, three Helmholtz resonators are implemented in series. Each resonator consists of a chamber and a number of slots, which can be modeled as a cavity and neck, respectively. Their target resonance frequencies are tuned using Boundary Element Method to achieve an effective noise reduction over the entire frequency range of interest. The predicted transmission loss of the silencer is then compared with the experimental results from a prototype in an impedance tube setup. In view of the presence of rapid grazing flow, these silencers may be susceptible to whistle-noise generation. Hence, the prototype is also examined on a flow bench at varying flow rates to assess such flow-acoustic coupling.
Journal Article

Comparative Assessment of Multi-Axis Bushing Properties Using Resonant and Non-Resonant Methods

2013-05-13
2013-01-1925
Shaped elastomeric joints such as engine mounts or suspension bushings undergo broadband, multi-axis loading; however, in practice, the elastomeric joint properties are often measured at stepped single frequencies (non-resonant test method). This article helps provide insight into multi-axis properties with new benchmark experiments that are designed to permit direct comparison between system resonant and non-resonant identification methods of the dynamic stiffness matrices of elastomeric joints, including multi-axis (non-diagonal) terms. The joints are constructed with combinations of inclined elastomeric cylinders to control non-diagonal terms in the stiffness matrix. The resonant experiment consists of an elastic metal beam end-supported by elastomeric joints coupling the in-plane transverse and longitudinal beam motion.
Journal Article

Instabilities at the Low-Flow Range of a Turbocharger Compressor

2013-05-13
2013-01-1886
The acoustic and performance characteristics of an automotive centrifugal compressor are studied on a steady-flow turbocharger test bench, with the goal of advancing the current understanding of compression system instabilities at the low-flow range. Two different ducting configurations were utilized downstream of the compressor, one with a well-defined plenum (large volume) and the other with minimized (small) volume of compressed air. The present study measured time-resolved oscillations of in-duct and external pressure, along with rotational speed. An orifice flow meter was incorporated to obtain time-averaged mass flow rate. In addition, fast-response thermocouples captured temperature fluctuations in the compressor inlet and exit ducts along with a location near the inducer tips.
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Finite Element Analysis of Piezoelectric Composite Actuators

2011-04-12
2011-01-0218
Piezoelectric materials are smart materials that can undergo mechanical deformation when electrically or thermally activated. An electric voltage is generated on the surfaces when a piezoelectric material is subjected to a mechanical stress. This is referred to as the ‘direct effect’ and finds application as sensors. The external geometric form of this material changes when it is subjected to an applied voltage, known as ‘converse effect’ and has been employed in the actuator technology. Such piezoelectric actuators generate enormous forces and make highly precise movements that are extremely rapid, usually in the micrometer range. The current work is focused towards the realization and hence application of the actuator technology based on piezoelectric actuation. Finite element simulations are performed on different types of piezoelectric actuations to understand the working principle of various actuators.
Journal Article

Effect of Contamination on Acoustic Performance of Microperforated Panels

2011-05-17
2011-01-1627
Microperforated panel (MPP) absorbers are rugged, non-combustible, and do not deteriorate over time. That being the case, they are especially suitable for long term use in harsh environments. However, the acoustic performance is modified when contaminated by dust, dirt, or fluids (i.e. oil, water). This paper examines that effect experimentally and correlates the absorption performance with Maa's theory for micro-perforated panels. Transfer impedance and absorption coefficient are measured for different levels of aluminum oxide and carbon dust accumulation. The amount of dust contamination is quantified by measuring the luminance difference between clean and dirty panels with a light meter. The porosity and hole diameter in Maa's equation are modified to account for dust obstruction. The effect of coating the MPP with oil, water, and other appropriate viscous fluids was also measured. This effect was simulated by modifying the viscous factor in Maa's equation.
Journal Article

Validation of Real Time Hardware in the Loop Simulation for ESC Testing with a 6×4 Tractor and Trailer Models

2013-04-08
2013-01-0692
The tractor trailer models discussed in this paper were for a real-time hardware-in-the-loop (HIL) simulation to test heavy truck electronic stability control (ESC) systems [1]. The accuracy of the simulation results relies on the fidelity and accuracy of the vehicle parameters used. However in this case where hardware components are part of the simulation, their accuracy also affects the proper working of the simulation and ESC unit. Hence both the software and hardware components have to be validated. The validation process discussed in this paper is divided into two sections. The first section deals with the validation of the TruckSim vehicle model, where experimental data is compared with simulation results from TruckSim. Once the vehicle models are validated, they are incorporated in the HIL simulation and the second section discusses the validation of the whole HIL system with ESC.
Journal Article

The Design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for Military Vehicles

2013-04-08
2013-01-0696
This paper describes the mechanical design of a Suspension Parameter Identification Device and Evaluation Rig (SPIDER) for wheeled military vehicles. This is a facility used to measure quasi-static suspension and steering system properties as well as tire vertical static stiffness. The machine operates by holding the vehicle body nominally fixed while hydraulic cylinders move an “axle frame” in bounce or roll under each axle being tested. The axle frame holds wheel pads (representing the ground plane) for each wheel. Specific design considerations are presented on the wheel pads and the measurement system used to measure wheel center motion. The constraints on the axle frames are in the form of a simple mechanism that allows roll and bounce motion while constraining all other motions. An overview of the design is presented along with typical results.
Technical Paper

Anisotropic Material Behavior and Design Optimization of 3D Printed Structures

2020-04-14
2020-01-0228
Traditional manufacturing processes such as injection or compression molding are often enclosed and pressurized systems that produce homogenous products. In contrast, 3D printing is exposed to the environment at ambient (or reduced) temperature and atmospheric pressure. Furthermore, the printing process itself is mostly “layered manufacturing”, i.e., it forms a three-dimensional part by laying down successive layers of materials. Those characteristics inevitably lead to an inconsistent microstructure of 3D printed products and thus cause anisotropic mechanical properties. In this paper, the anisotropic behaviors of 3D printed parts were investigated by using both laboratory coupon specimens (bending specimens) and complex engineering structures (A-pillar). Results show that the orientation of the infills of 3D printed parts can significantly influence their mechanical properties.
Journal Article

Comparison of Heavy Truck Engine Control Unit Hard Stop Data with Higher-Resolution On-Vehicle Data

2009-04-20
2009-01-0879
Engine control units (ECUs) on heavy trucks have been capable of storing “last stop” or “hard stop” data for some years. These data provide useful information to accident reconstruction personnel. In past studies, these data have been analyzed and compared to higher-resolution on-vehicle data for several heavy trucks and several makes of passenger cars. Previous published studies have been quite helpful in understanding the limitations and/or anomalies associated with these data. This study was designed and executed to add to the technical understanding of heavy truck event data recorders (EDR), specifically data associated with a modern Cummins power plant ECU. Emergency “full-treadle” stops were performed at many combinations of load-speed-surface coefficient conditions. In addition, brake-in-curve tests were performed on wet Jennite for various conditions of disablement of the braking system.
Journal Article

Vehicle Coast Analysis: Typical SUV Characteristics

2008-04-14
2008-01-0598
Typical factors that contribute to the coast down characteristics of a vehicle include aerodynamic drag, gravitational forces due to slope, pumping losses within the engine, frictional losses throughout the powertrain, and tire rolling resistance. When summed together, these reactions yield predictable deceleration values that can be related to vehicle speeds. This paper focuses on vehicle decelerations while coasting with a typical medium-sized SUV. Drag factors can be classified into two categories: (1) those that are caused by environmental factors (wind and slope) and (2) those that are caused by the vehicle (powertrain losses, rolling resistance, and drag into stationary air). The purpose of this paper is to provide data that will help engineers understand and model vehicle response after loss of engine power.
Journal Article

The Influence of Disablement of Various Brakes on the Dry Stopping Performance and Stability of a Tractor-Semitrailer

2009-04-20
2009-01-0099
This research was performed using a designed experiment to evaluate the loss of dry surface braking performance and stability that could be associated with the disablement of specific brake positions on a tractor-semitrailer. The experiment was intended to supplement and update previous research by Heusser, Radlinski, Flick, and others. It also sought to establish reasonable limits for engineering estimates on stopping performance degradation attributable to partial or complete brake failure of individual S-cam air brakes on a class 8 truck. Stopping tests were conducted from 30 mph and 60 mph, with the combination loaded to GCW (80,000 lb.), half-payload, and with the flatbed semitrailer unladen. Both tractor and semitrailer were equipped with antilock brakes. Along with stopping distance, brake pressures, longitudinal acceleration, road wheel speed, and steering wheel position and effort were also recorded.
Journal Article

Semitrailer Torsional Stiffness Data for Improved Modeling Fidelity

2011-09-13
2011-01-2163
Vehicle dynamics models employed in heavy truck simulation often treat the semitrailer as a torsionally rigid member, assuming zero deflection along its longitudinal axis as a moment is applied to its frame. Experimental testing, however, reveals that semitrailers do twist, sometimes enough to precipitate rollover when a rigid trailer may have remained upright. Improving the model by incorporating realistic trailer roll stiffness values can improve assessment of heavy truck dynamics, as well as an increased understanding of the effectiveness of stability control systems in limit handling maneuvers. Torsional stiffness measurements were conducted by the National Highway Traffic Safety Administration (NHTSA) for eight semitrailers of different types, including different length box vans, traditional and spread axle flat beds, and a tanker.
Technical Paper

Effects of Seal Viscoelastic Properties on Engine Exterior Cover Noise and Vibration

2007-05-15
2007-01-2285
Engine exterior cover seals are typically made of elastomeric materials and used to seal the interfaces. The design of engine/transmission seals has been traditionally considered from the sealibility aspects. Recently, there have been additional demands that these seals be designed to reduce the vibration transmitted from engine/transmission and to attenuate the radiated noise. To accomplish this goal, the frequency-dependent viscoelastic properties of the seals will have to be considered. This article examines the frequency-dependent viscoelastic properties of some common elastomeric seals. The impacts of these materials on an engine valve cover noise and vibration are particularly investigated. Some design strategies are also discussed to optimize the viscoelastic effects of the elastomeric seals.
Technical Paper

Accurate Measurement of Small Absorption Coefficients

2007-05-15
2007-01-2224
In this paper procedures for estimating the sound absorption coefficient when the specimen has inherently low absorption are discussed. Examples of this include the measurement of the absorption coefficient of pavements, closed cell foams and other barrier materials whose absorption coefficient is nevertheless required, and the measurement of sound absorption of muffler components such as perforates. The focus of the paper is on (1) obtaining an accurate phase correction and (2) proper correction for tube attenuation when using impedance tube methods. For the latter it is shown that the equations for tube attenuation correction in the standards underestimate the actual tube attenuation, leading to an overestimate of the measured absorption coefficient. This error could be critical, for example, when one is attempting to qualify a facility for the measurement of pass-by noise.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Application of Micro-Perforated Panels to Attenuate Noise in a Duct

2007-05-15
2007-01-2196
The sound attenuation performance of microperforated panels (MPP) with adjoining air cavity is demonstrated. First of all, simulated results are shown based upon Maa's work investigating the parameters which impact MPP performance [1]. It is shown that the most important parameter is the depth of the adjoining cavity. Following this, an experimental study was undertaken to compare the performance of an MPP to that of standard foam. Following this, two strategies to improve the MPP performance are implemented. These include partitioning the air cavity and having a cavity with varying depth. Both strategies show a marked improvement in MPP attenuation.
Technical Paper

Errors Associated with Transfer Path Analysis when Rotations are not Measured

2007-05-15
2007-01-2179
Previously we had found significant errors in the interfacial force results for a source-path-receiver system where only translational motions were measured. This paper examines the sources of those errors by using computational finite and boundary element models. The example case consists of a source structure (with few modes), a receiver (with many modes) and three steel rod paths. We first formulate indirect, yet exact, methods for estimating interfacial forces, by assuming that six-dimensional motions at any location are available though we focus on only the driving points. One- and three-dimensional sub-sets of the proposed formulation are compared with the six-dimensional theory in terms of interfacial force and partial sound pressure spectra.
Technical Paper

Characterize the High-Frequency Dynamic Properties of Elastomers Using Fractional Calculus for FEM

2007-05-15
2007-01-2417
Finite element modeling has been used extensively nowadays for predicting the noise and vibration performance of whole engines or subsystems. However, the elastomeric components on the engines or subsystems are often omitted in the FE models due to some known difficulties. One of these is the lack of the material properties at higher frequencies. The elastomer is known to have frequency-dependent viscoelasticity, i.e., the dynamic modulus increases monotonically with frequency and the damping exhibits a peak. These properties can be easily measured using conventional dynamic mechanical experiments but only in the lower range of frequencies. The present paper describes a method for characterizing the viscoelastic properties at higher frequencies using fractional calculus. The viscoelastic constitutive equations based on fractional derivatives are discussed. The method is then used to predict the high frequency properties of an elastomer.
Technical Paper

Source Identification Using an Inverse Visible Element Rayleigh Integral Approach

2007-05-15
2007-01-2180
This paper documents an inverse visible element Rayleigh integral (VERI) approach. The VERI is a fast though approximate method for predicting sound radiation that can be used in the place of the boundary element method. This paper extends the method by applying it to the inverse problem where the VERI is used to generate the acoustic transfer matrix relating the velocity on the surface to measurement points. Given measured pressures, the inverse VERI can be used to reconstruct the vibration of a radiating surface. Results from an engine cover and diesel engine indicate that the method can be used to reliably quantify the sound power and also approximate directivity.
X