Refine Your Search

Topic

Search Results

Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

An Innovative I-Bumper Concept for Improved Crashworthiness of Military and Commercial Vehicles

2008-04-14
2008-01-0512
The greatest demand facing the automotive industry has been to provide safer vehicles with high fuel efficiency at minimum cost. Current automotive vehicle structures have one fundamental handicap: a short crumple zone for crash energy absorption. This leaves limited room for further safety improvement, especially for high-speed crashes. Breakthrough technologies are needed. One potential breakthrough is to use active devices instead of conventional passive devices. An innovative inflatable bumper concept [1], called the “I-bumper,” is being developed by the authors for crashworthiness and safety of military and commercial vehicles. The proposed I-bumper has several active structural components, including a morphing mechanism, a movable bumper, two explosive airbags, and a morphing lattice structure with a locking mechanism that provides desired rigidity and energy absorption capability during a vehicular crash.
Technical Paper

An External Explosive Airbag Model for an Innovative Inflatable Bumper (I-bumper) Concept

2008-04-14
2008-01-0508
In the I-bumper (inflatable bumper) concept [1], two explosive airbags are released just before the main body-to-body crash in order to absorb the kinetic energy of colliding vehicles. The release also actuates other components in the I-bumper, including a movable bumper and an energy absorption morphing lattice structure. A small explosive charge will be used to deploy the airbag. A conventional airbag model will be used to reduce the crash energy in a controlled manner and reduce the peak impact force. An analytic model of the explosive airbag is developed in this paper for the I-bumper system and for its optimal design, while the complete system design (I-bumper) will be discussed in a separate paper. Analytical formulations for an explosive airbag will be developed and major design variables will be identified. These are used to determine the required amount of explosive and predict airbag behavior, as well to predict their impact on the I-bumper system.
Technical Paper

Integrated, Feed-Forward Hybrid Electric Vehicle Simulation in SIMULINK and its Use for Power Management Studies

2001-03-05
2001-01-1334
A hybrid electric vehicle simulation tool (HE-VESIM) has been developed at the Automotive Research Center of the University of Michigan to study the fuel economy potential of hybrid military/civilian trucks. In this paper, the fundamental architecture of the feed-forward parallel hybrid-electric vehicle system is described, together with dynamic equations and basic features of sub-system modules. Two vehicle-level power management control algorithms are assessed, a rule-based algorithm, which mainly explores engine efficiency in an intuitive manner, and a dynamic-programming optimization algorithm. Simulation results over the urban driving cycle demonstrate the potential of the selected hybrid system to significantly improve vehicle fuel economy, the improvement being greater when the dynamic-programming power management algorithm is applied.
Technical Paper

Prediction of Head Orientation based on the Visual Image of a Three Dimensional Space

2001-06-26
2001-01-2092
Head movements contribute to the acquisition of targets in visually guided tasks such as reaching and grasping. It has been found that head orientation is generally related to the spatial location of the visual target. The movements of the head in a three-dimensional space are described using six degrees of freedom including translations along x-, y- and z-axis plus rotations about x-, y- and z-axis. While the control of head movement is heavily dependent upon visual perception, head movements lead to a change in the visual perception of the task space as well. In the present study we analyzed head movements in a set of driving simulation experiments. Also a theoretical reconstruction of the perceived task space after head movements was modeled by a statistical regression. This process included the transformation of the task space from a global reference frame (earth-fixed) into a perceived space in a head-centered reference frame (head-fixed).
Technical Paper

The Roles of Camera-Based Rear Vision Systems and Object-Detection Systems: Inferences from Crash Data

2004-03-08
2004-01-1758
Advances in electronic countermeasures for lane-change crashes, including both camera-based rear vision systems and object-detection systems, have provided more options for meeting driver needs than were previously available with rearview mirrors. To some extent, human factors principles can be used to determine what countermeasures would best meet driver needs. However, it is also important to examine sets of crash data as closely as possible for the information they may provide. We review previous analyses of crash data and attempt to reconcile the implications of these analyses with each other as well as with general human factors principles. We argue that the data seem to indicate that the contribution of blind zones to lane-change crashes is substantial.
Technical Paper

Modeling of Effort Perception in Lifting and Reaching Tasks

2001-06-26
2001-01-2120
Although biomechanics models can predict the stress on the musculoskeletal system, they cannot predict how the muscle load associated with exertion is perceived. The short-term goal of the present study was to model the perception of effort in lifting and reaching tasks. The long-term goal is to determine the correlation between objective and subjective measures of effort and use this information to predict fatigue or the risk of injury. Lifting and reaching tasks were performed in seated and standing situations. A cylindrical object and a box were moved with one hand and two hands, respectively, from a home location to shelves distributed in the space around the subject. The shoulder and torso effort required to perform these tasks were rated on a ten point visual analog scale.
Technical Paper

Modifying Motions for Avoiding Obstacles

2001-06-26
2001-01-2112
Interference between physical objects in the workspace and the moving human body may cause serious problems, including errors in manual operation, physical damage and trauma from the collision, and increased biomechanical stresses due to movement reorganization for avoiding the obstacles. Therefore, a computer algorithm to detect possible collisions and simulate human motions to avoid obstacles will be an important tool for computer-aided ergonomics and optimization of system design in the early stage of a design process. In the present study, we present a method of modifying motions for obstacle avoidance when the object intrudes near the center of the planned motion. We take the motion modification approach, as we believe that for a certain class of obstacle avoidance problems, a person would modify a pre-planned motion that would result in a collision to a new one that is collision-free, as opposed to organizing a totally unique motion pattern.
Technical Paper

Assessing the Fuel Economy Potential of Light-Duty Vehicles

2001-08-20
2001-01-2482
This paper assesses the potential for car and light truck fuel economy improvements by 2010-15. We examine a range of refinements to body systems and powertrain, reflecting current best practice as well as emerging technologies such as advanced engine and transmission, lightweight materials, integrated starter-generators, and hybrid drive. Engine options are restricted to those already known to meet upcoming California emissions standards. Our approach is to apply a state-of-art vehicle system simulation model to assess vehicle fuel economy gains and performance levels. We select a set of baseline vehicles representing five major classes - Small and Standard Cars, Pickup Trucks, SUVs and Minivans - and analyze design changes likely to be commercially viable within the coming decade. Results vary by vehicle type.
Technical Paper

Failure Modeling of Spot Welds Under Complex Combined Loading Conditions for Crash Applications

2002-07-09
2002-01-2032
Experiments to obtain the failure loads of spot welds are first reviewed under combined opening and shear loading conditions. A failure criterion is then presented for spot welds under combined opening and shear loading conditions based on the results from the experiments and a lower bound limit load analysis. In order to account for spot welds under more complex loading conditions, another lower bound limit load solution is presented to characterize the failure loads of spot welds under combinations of three forces and three moments. Based on the limit load solution, an engineering failure criterion is proposed with correction factors determined by different spot weld tests. The engineering failure criterion can be used to characterize the failure loads of spot welds with consideration of the effects of sheet thickness, nugget radius and combinations of loads.
Technical Paper

Posture and Motion Prediction: Perspectives for Unconstrained Head Movements

2006-07-04
2006-01-2330
The relationship between motion and posture was investigated from the kinematics of unconstrained head movements. Head movements for visual gazing exhibited an initial component whose amplitude does not exceed 20.3° for target eccentricity up to 120°. This component was truncated by subsequent corrective movements whose occurrence generally increases with target eccentricity, although with a large variability (R2 ≤ 0.46). The head is finally stabilized at 72% of target eccentricity (R2 ≥ 0.92). These results indicate that the final head posture can be achieved through a number of loosely-programmed kinematic variations. Based on these results, unconstrained head movements were simulated, within the context of application to posture prediction for estimation of the visual field.
Technical Paper

Investigation of Airbag-Induced Skin Abrasions

1992-11-01
922510
Static deployments of driver-side airbags into the legs of human subjects were used to investigate the effects of inflator capacity, internal airbag tethering, airbag fabric, and the distance from the module on airbag-induced skin abrasion. Abrasion mechanisms were described by measurements of airbag fabric velocity and target surface pressure. Airbag fabric kinematics resulting in three distinct abrasion patterns were identified. For all cases, abrasions were found to be caused primarily by high-velocity fabric impactrather than scraping associated with lateral fabric motion. Use of higher-capacity inflators increased abrasion severity, and untethered airbags produced more severe abrasions than tethered airbags at distances greater than the length of the tether. Abrasion severity decreased as the distance increased from 225 to 450 mm. Use of a finer-weave airbag fabric in place of a coarser-weave fabric did not decrease the severity of abrasion.
Technical Paper

Infrared Night Vision Systems and Driver Needs

2003-03-03
2003-01-0293
Night vision enhancement systems (NVES), which use infrared (IR) cameras, are designed to supplement the visibility provided by standard headlamps. There are two main NVES systems: active, near infrared (NIR) systems, which require an IR source but give a complete picture of the scene in front of the driver, and passive, far infrared (FIR) systems, which do not need an IR source but only enhance relatively warm objects (such as people and animals). There are three main display alternatives: a head-up display (HUD) superimposed on the direct view of the road, a HUD just above the dashboard but separated from the direct view, and a conventional display somewhere in the dashboard. This paper analyzes what a NVES should do to improve night visibility based on night crash statistics, driver vision and visibility conditions in night driving, driver tasks and behavior, and the options offered by various technological approaches. Potential problems with using NVES are also discussed.
Technical Paper

Framing Effects on Distance Perception in Rear-Vision Displays

2003-03-03
2003-01-0298
The increasing availability of camera-based displays for indirect vision in vehicles is providing new opportunities to supplement drivers' direct views of the roadway and surrounding traffic, and is also raising new issues about how drivers perceive the positions and movements of surrounding vehicles. We recently reported evidence that drivers' perception of the distance to rearward vehicles seen in camera-based displays is affected not only by the visual angles subtended by the images of those vehicles, but also by the sizes of those images relative to the sizes of the displays within which they are seen (an influence that we have referred to as a framing effect). There was also evidence for a similar, but weaker, effect with rearview mirrors.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Model Update Under Uncertainty and Error Estimation in Shock Applications

2005-05-16
2005-01-2373
Numerical models are used for computing the shock response in many areas of engineering applications. Current analysis methods do not account for uncertainties in the model parameters. In addition, when numerical models are calibrated based on test data neither the uncertainty which is present in the test data nor the uncertainty in the model are taken into account. In this paper an approach for model update under uncertainty and error estimation for shock applications is presented. Fast running models are developed for the model update based on principal component analysis and surrogate models. Once the numerical model has been updated the fast running models are employed for performing probabilistic analyses and estimate the error in the numerical solution. The new developments are applied for computing the shock response of large scale structures, updating the numerical model based on test data, and estimating the error in the predictions.
Technical Paper

Using Vehicle Dynamics Simulation as a Teaching Tool in Automotive Engineering Courses

2005-04-11
2005-01-1795
Some of the best teaching methods are laboratory courses in which students experience application of the principles being presented. Preparing young engineering students for a career in the automotive industry challenges us to provide comparable opportunities to explore the dynamic performance of motor vehicles in a controlled environment. Today we are fortunate to have accurate and easy-to-use software programs making it practical for students to simulate the performance of motor vehicles on “virtual” proving grounds. At the University of Michigan the CarSim® vehicle dynamics simulation program has been introduced as such a tool to augment the learning experience. The software is used in the Automotive Engineering course to supplement homework exercises analyzing acceleration, braking, aerodynamics, and cornering performance. This paper provides an overview of the use of simulation in this setting.
Technical Paper

Anatomy and Physiology of the Respiratory System

1971-02-01
710297
The anatomy of the human respiratory system is detailed. The function of the entire system is shown from inspiration to expiration. Equations are given to illustrate flow-pressure relationships in the airways. Specifics of gas transfer are shown. All these details of physiology and function are necessary for an understanding of the effects of air pollution upon the human respiratory system.
Technical Paper

Basic Physiology of Carbon Monoxide

1971-02-01
710300
The physiology of carbon monoxide is discussed in the human respiratory system. The details of the relationship of carbon monoxide and hemoglobin are outlined, and the effects of specific concentrations of CO are shown. Acute and chronic exposures to CO create certain effects on the various bodily systems, and these are described in detail.
X