Refine Your Search

Topic

Author

Search Results

Technical Paper

Commercial vehicle pedal feeling comfort ranges definition

2020-01-13
2019-36-0016
The brake pedal is the brake system component that the driver fundamentally has contact and through its action wait the response of the whole system. Each OEM defines during vehicle conceptualization the behavior of brake pedal that characterizes the pedal feel that in general reflects not only the characteristic from that vehicle but also from the entire brand. Technically, the term known as Pedal Feel means the relation between the force applied on the pedal, the pedal travel and the deceleration achieved by the vehicle. Such relation curves are also analyzed in conjunction with objective analysis sheets where the vehicle brake behavior is analyzed in test track considering different deceleration conditions, force and pedal travel. On technical literature, it is possible to find some data and studies considering the hydraulic brakes behavior.
Technical Paper

Water Avoidance Design Strategy for Capacitive Exterior Handles

2020-01-13
2019-36-0187
Nowadays, capacitive handles are increasing their use in high-end commercial vehicles. This particular handle applies a technology that permits to unlock and even lock the vehicle without a key. As benefit for current life, the customer has the possibility to access and close the vehicles more efficiently and faster, just possessing the key in the pocket or any close compartment that the user is carrying, for example, bag, purse, backpack. Even though, the design of capacitive exterior handle must follow several design strategies to avoid nonfunctional in rainy climate. Water could work as a blocker for the sensor signal captured, special design strategies that must be taken in order to minimize that the liquid could ingress the handle and even be retained on the region that sensor is located.
Technical Paper

Light Truck Stabilizer Bar Attachment Non-linear Fatigue Analysis

1998-11-16
982833
The stabilizer bar attachments problem can not be simply analyzed by using linear FEA methodology. The large deformation in the bushing, the elastic-plastic material property in the bushing retainer bracket, and the contact between different parts all add complexity to the problem and result in the need for an analysis method using a non-linear code, such as ABAQUS. The material properties of the bushing were experimentally determined and applied to the CAE model. It was found that using strains to estimate the fatigue life was more accurate and reliable than using stress. Many modeling techniques used in this analysis were able to improve analysis efficiency.
Technical Paper

Application of LIN Network Interface for Ford South America Vehicles

2003-11-18
2003-01-3692
Some communication buses are too powerful and expensive for simple digital on/off operations such as activating lights, wipers, windows, etc. For these applications the LIN bus is currently the most promising communication protocol across the world's automotive industry. This paper addresses a study using LIN (Local Interconnect Network) for Ford South America vehicles. This will propose a new electrical architecture designed with LIN network, which will be replacing the conventional rear and front lights cables in Trucks, where other higher protocols, such as CAN, are not cost effective. LIN is a new low cost serial communication system intended to be used for distributed electronic system that will allow gaining further quality enhancement and cost reduction on cables, connectors and switches.
Technical Paper

Pickups Vehicle Dynamics: Ride and Skate

2003-11-18
2003-01-3588
The driver judges his vehicle based on subjective aspects. Vehicle dynamics characteristics including ride and handling have a major impact on this evaluation. For this reason, vehicle manufactures have grown investments in order to improve vehicle dynamics behavior. Subjective evaluation and customer satisfaction research show which dynamic characteristics need to be improved. CAE models, after being validated based on experimental measures, give a good insight on vehicle dynamic behavior and guide change proposals. At end, new subjective evaluations and measures are carried out in order to check the real improvement of CAE proposals. This work shows the use of the described methodology for a pickup vehicle dynamics evaluation. One of the major complains of pickup drives is related to ride quality. Thinking of that feature the evaluation process considers several phenomena, such as abruptness, front topping, front bottoming, head toss and rear aftershake.
Technical Paper

Co-fueling of Urea for Diesel Cars and Trucks

2002-03-04
2002-01-0290
Urea SCR is an established method to reduce NOx in dilute exhaust gas. The method is being used currently with stationary powerplants, and successful trials on motor vehicles have been conducted. The reason most often cited for rejecting urea SCR is lack of urea supply infrastructure, yet urea and other high nitrogen products are traded as commodities on the world market as a fertilizer grade, and an industrial grade is emerging. For a subset of commercial vehicles, urea can be provided by service personnel at designated terminals. But this approach does not support long distance carriers and personal use vehicles. The preferred delivery method is to add urea during vehicle refueling through a common fuel nozzle and fill pipe interface: urea / diesel co-fueling. Aqueous urea is well suited to delivery in this fashion.
Technical Paper

Diagnostics and Prognostics via Telematics for Commercial Vehicles: On-Board Systems

2002-11-18
2002-01-3088
The introduction of wireless communications capability into vehicles provides a means to offer new services centered on remote monitoring, diagnostics and prognostics for vehicle systems linked to the communications channel. This paper examines some important elements of on-board system design necessary to provide these services and indicates how they might be linked into an off-board “decision center” to provide effective services for commercial vehicles.
Technical Paper

Development of Pneumatic Suspension Type Full Air for Commercial Vehicles

2016-05-11
2016-36-0069
The air suspension development and application has becoming increasingly applied also in commercial vehicles, offering to the driver more dynamic comfort as well as contributing to the reduction of impact loads on highways. Through this project pursuit show the analysis and application of an air suspension system for commercial tractor vehicles application. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension′s stiffness under different conditions of usage, laden and unladen. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain the vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions. For entire development were also used quality tools, considering the possible failure modes and effects as well as virtual simulation tools (Adams) and bench validations.
Technical Paper

Development of a Commercial Truck Parabolic Leaf Spring Using CAE Simulation with Correlated Experimental Stress Analysis Results

2017-11-07
2017-36-0126
The development costs that new design requires are subject to everyday discussions and saving opportunities are mandatory. Using CAE to predict design changes can avoid excessive costs with prototypes parts, considering the high reliability those current mathematical models can provide. This paper presents the methodology used during the development of a parabolic leaf spring for the rear suspension of a commercial truck, considering mainly the parabolic profiles and stress distribution on the leaves, calculated using CAE software (ANSYS) and experimental tests to measure the actual stress on each leaf, certifying the correlation between computational calculations and real stress on the parts during bench and vehicle evaluations.
Technical Paper

Deconstruction of UN38.3 into a Process Flowchart

2017-03-28
2017-01-1208
This paper will discuss a compliance demonstration methodology for UN38.3, an international regulation which includes a series of tests that, when successfully met, ensure that lithium metal and lithium ion batteries can be safely transported. Many battery safety regulations, such as FMVSS and ECE, include post-crash criteria that are clearly defined. UN38.3 is unique in that the severity of the tests drove changes to battery design and function. Another unique aspect of UN38.3 is that the regulatory language can lead to different interpretations on how to run the tests and apply pass/fail criteria; there is enough ambiguity that the tests could be run very differently yet all meet the actual wording of the regulation. A process was created detailing exactly how to run the tests to improve consistency among test engineers. As part of this exercise, several tools were created which assist in generating a test plan that complies with the UN38.3 regulation.
Technical Paper

Development of Full Air Pneumatic Suspension Type for Commercial Vehicles

2017-03-28
2017-01-1490
The air suspension development and its applications have becoming increasingly relevant for commercial vehicles to provide dynamic ride comfort to driver and reduce the load impact onto driver and or cargo. This paper shows the analysis and application of an air suspension system for commercial tractor vehicles and its dynamic influence. A special focus was given to pneumatic actuation system, responsible for leveling and control of suspension´s stiffness under different conditions of usage, laden and unladed. The project was conducted starting with the vehicle dynamic performance analysis, evaluating the pneumatic suspension circuit modifications in order to obtain vehicle dynamic behavior improvement, ensuring directional stability under different maneuvering conditions.
Technical Paper

Methodology for Determination and Optimization of Bolted Joints

2017-11-07
2017-36-0294
In order to optimize the development of bolted joints used to components attachments in the Sidemember of commercial vehicles, the joints development has become relevant to better definition of the fasteners size, eliminating overweight and avoiding under or super-sized. This paper presents a development sequential approach of bolted joints applied on commercial vehicles ensuring the correct specifications usage of the fasteners and the joint to keep their clamp force. The evaluations were conducted based on theoretical and practical aspects applied on products and in the definition of all elements contained in a joint. The calculation methodology was developed based on standardized bolts and forces generated through the reactions of the components required for each vehicle family.
Technical Paper

A Framework for Reliable and Durable Product Design

1996-08-01
961794
In this paper, a simplified and systematic approach to integrate reliability and durability aspects in design process is presented. A six step process is explained with the help of examples. Two alternatives for gathering means and standard deviations for key parameters are discussed. First a DOE approach based on orthogonal arrays is presented. Second approach is based on Taylor Series expansion. An example of beam design is solved with both of these approaches. The Second example also considers the degradation with time in service.
Technical Paper

Reducing High Frequency Driveshaft Radiated Noise by Polymer Liners

2005-11-01
2005-01-3554
In automotive industry inserting cardboard liners or foam in the dirveshaft to prevent them from functioning as a path or amplifier to high frequency gear whine excitation is a common practice. Due to limited damping capability, these liners, however, have limited effectiveness and may not prevent or effectively reduce the shaft radiated noise. This paper addresses the feasibility and performance of polymers as an alternative lining material and technique. Through experimental investigations it has been shown that the polymer liners in reducing the driveshaft radiated noise are more effective than the cardboard liners.
Technical Paper

CAE Approach for Light Truck Frame Durability Evaluation Due to Payload Increase

2004-11-16
2004-01-3411
The growing competition of the automotive market makes more and more necessary the reduction of development time and consequently, the increase of the capacity to quickly respond to the launching of the competitors. One of the most costly phases on the vehicle development process is the field durability test, both in function of the number of prototypes employed and the time needed to its execution. More and more diffused, the fatigue life prediction methods have played an important part in the durability analysis via CAE. Nevertheless, in order they can be reliable and really being able to reduce the development time and cost, they need to be provided with load cases that can accurately represent the field durability tests. This work presents a CAE approach used for light trucks in order to get a reasonable understanding of component durability behavior due to payload increase. In general, road load data is not available for a new payload condition.
Technical Paper

Magnetic Tape and Servo-Hydraulics Applied to Truck Frame Testing

1964-01-01
640119
This paper discusses the possible impact of the FM tape recorder and servo-hydraulic actuators on the testing of automotive structures. The use of tape recorders and automatic data reduction systems will permit more accurate definition of service conditions and properly “set-the-stage” for laboratory testing. Servo-hydraulic strokers should encourage better laboratory simulation because of their great flexibility. Test set-up time is reduced, fixtures can be simplified and load control is more precise. Simultaneous multiple inputs can be controlled as to amplitude and phase relationships.
Technical Paper

Aerostar Powertrain and Chassis Isolation Technology

1984-11-01
841695
The unitized construction Aerostar compact van and wagon models have been engineered to meet a variety of consumer transportation needs. The broad range of functional and image objectives have been attained by traditional design and development programs augmented by new developmental methods and isolation components. State-of-the-art development methodologies applied early in the Aerostar program enabled prediction of the effects of design revisions intended to improve subsystem response characteristics and isolation. Developmental methods used included finite element analysis, modal analysis and synthesis, transmissibility measurements, torsional powertrain measurements, continuous wave laser holography, acoustical mode determination, acoustical intensity mapping and sensitivity studies used to project production ranges of quality.
Journal Article

Cruise Controller with Fuel Optimization Based on Adaptive Nonlinear Predictive Control

2016-04-05
2016-01-0155
Automotive cruise control systems are used to automatically maintain the speed of a vehicle at a desired speed set-point. It has been shown that fuel economy while in cruise control can be improved using advanced control methods. The objective of this paper is to validate an Adaptive Nonlinear Model Predictive Controller (ANLMPC) implemented in a vehicle equiped with standard production Powertrain Control Module (PCM). Application and analysis of Model Predictive Control utilizing road grade preview information has been reported by many authors, namely for commercial vehicles. The authors reported simulations and application of linear and nonlinear MPC based on models with fixed parameters, which may lead to inaccurate results in the real world driving conditions. The significant noise factors are namely vehicle mass, actual weather conditions, fuel type, etc.
Technical Paper

Compact Normalized Description of Vehicle Traction Power for Simple Fuel Consumption Modeling

2023-04-11
2023-01-0350
This is an extension of simple fuel consumption modeling toward HEV. Previous work showed that in urban driving the overhead of running an ICEV engine can use as much fuel as the traction work. The bidirectional character and high efficiency of electric motors enables HEVs to run as a BEV at negative and low traction powers, with no net input from the small battery. The ICE provides the net work at higher traction powers where it is most efficient. Whereas the network reduction is the total negative work times the system round-trip efficiency, the reduction in engine running time requires knowledge of the distribution of traction power levels. The traction power histogram, and the work histogram derived from it, provide the required drive cycle description. The traction power is normalized by vehicle mass, so that the drive trace component becomes invariant, and the road load component nearly invariant to vehicle mass.
Technical Paper

Road User Risk with Older Light Trucks

1999-04-27
1999-01-2258
Do older light trucks, often with second (and subsequent) owners, present a higher risk to either their own occupants or to other road users? And is the safety record for newer trucks better or worse than the record for their older counterparts? To answer these questions, fatalities in crashes involving at least one light truck were examined using the Fatal Analysis Reporting System (FARS). Fatality rates for both occupants of the light truck and for other road users (occupants of other motor vehicles, pedestrians, etc.) in these crashes were computed, based both on the number of registered vehicles and on the vehicle miles of travel. Two trends in these fatality rates are observed. First, as light trucks age, a consistent decline is found in risk both to their own occupants and to other road users. Second, a distinct decrease is found in road user risk for newer light trucks compared to older light trucks when they were new, both for their own occupants and for other road users.
X