Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

Experimental Determination of an Engine's Inertial Properties

2007-05-15
2007-01-2291
Determination of an engine's inertial properties is critical during vehicle dynamic analysis and the early stages of engine mounting system design. Traditionally, the inertia tensor can be determined by torsional pendulum method with a reasonable precision, while the center of gravity can be determined by placing it in a stable position on three scales with less accuracy. Other common experimental approaches include the use of frequency response functions. The difficulty of this method is to align the directions of the transducers mounted on various positions on the engine. In this paper, an experimental method to estimate an engine's inertia tensor and center of gravity is presented. The method utilizes the traditional torsional pendulum method, but with additional measurement data. With this method, the inertia tensor and center of gravity are estimated in a least squares sense.
Technical Paper

Axle Imbalance Measurement and Balancing Strategies

2007-05-15
2007-01-2238
This paper summarizes a study on axle balance measurement and balancing strategies. Seven types of axles were investigated. Test samples were randomly selected from products. Two significant development questions were set out to be answered: 1) What is the minimum rotational speed possible in order to yield measured imbalance readings which correlated to in-vehicle imbalance-related vibration. What is the relationship between the measured imbalance and rotational speed. To this end, the imbalance level of each axle was measured using a test rig with different speeds from 800 to 4000 rpm with 200 rpm increments. 2) Is it feasible to balance axle sub-assemblies only and still result in a full-assembly that satisfies the assembled axle specification? To this end, the sub-assemblies were balanced on a balance machine to a specified level. Then with these balanced sub-assemblies, the full assemblies were completed and audited on the same balance test rig in the same way.
Technical Paper

Experimental Modal Methodologies for Quantification of Body/Chassis Response to Brake Torque Variation

2007-05-15
2007-01-2343
Brake torque variation is a source of objectionable NVH body/chassis response. Such input commonly results from brake disk thickness variation. The NVH dynamic characteristics of a vehicle can be assessed and quantified through experimental modal testing for determination of mode resonance frequency, damping property, and shape. Standard full vehicle modal testing typically utilizes a random input excitation into the vehicle frame or underbody structure. An alternative methodology was sought to quantify and predict body/chassis sensitivity to brake torque variation. This paper presents a review of experimental modal test methodologies investigated for the reproduction of vehicle response to brake torque variation in a static laboratory environment. Brake caliper adapter random and sine sweep excitation input as well as body sine sweep excitation in tandem with an intentionally locked brake will be detailed.
Technical Paper

Validation of Vehicle NVH Performance using Experimental Modal Testing and In-Vehicle Dynamic Measurements

2007-05-15
2007-01-2320
NVH targets for future vehicles are often defined by utilizing a competitive benchmarking vehicle in conjunction with an existing production and/or reference vehicle. Mode management of full vehicle modes is one of the most effective and significant NVH strategies to achieve such targets. NVH dynamic characteristics of a full vehicle can be assessed and quantified through experimental modal testing for determination of global body mode resonance frequency, damping property, and mode shape. Major body modes identified from full vehicle modal testing are primarily dominated by the vehicle's body-in-white structure. Therefore, an estimate of BIW modes from full vehicle modes becomes essential, when only full vehicle modes from experimental modal testing exist. Establishing BIW targets for future vehicles confines the fundamental NVH behavior of the full vehicle.
Technical Paper

Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study

2006-12-05
2006-01-3620
This paper investigates the aerodynamic simulation accuracy of several types of wind tunnel test sections. Computational simulations were performed with a closed wheel race car in an 11.0 m2 adaptive wall, a 16.8 m2 open jet, and a 29.7 m2 slotted wall test section, corresponding to model blockage ratios of 20.9%, 13.7%, and 7.7%, respectively. These are compared to a simulation performed in a nearly interference-free condition having a blockage ratio of 0.05%, which for practical purposes of comparison, is considered a free air condition. The results demonstrate that the adaptive wall most closely simulates the free air condition without the need for interference corrections. In addition to this advantage, the significantly smaller size of the adaptive wall test section offers lower capital and operating costs.
Technical Paper

Acceptance of Nonplanar Rearview Mirrors by U.S. Drivers

1998-02-23
980919
Five different nonplanar mirrors were evaluated as driver-side rearview mirrors in a field test using Ford employees. Two were spherical convex (differing in radius of curvature), and three were aspheric (differing primarily in the proportion of their surfaces over which radius of curvature was variable). Each participant drove for four weeks with one of the nonplanar mirrors. At three times during the test the participants filled out questionnaires concerning their experience with the mirrors. Driver preferences for the experimental mirrors increased moderately between surveys at one week and at four weeks. At four weeks, all five nonplanar mirrors were preferred to the standard flat mirror by at least a small amount. For each of the five mirror designs there was a large range of opinion. Most notably, a small number of people strongly disliked the aspheric design that involved the largest variable-radius area.
Technical Paper

A Field Study of Distance Perception with Large-Radius Convex Rearview Mirrors

1998-02-23
980916
One of the primary reasons that FMVSS 111 currently requires flat rearview mirrors as original equipment on the driver's side of passenger cars is a concern that convex mirrors might reduce safety by causing drivers to overestimate the distances to following vehicles. Several previous studies of the effects of convex rearview mirrors have indicated that they do cause overestimations of distance, but of much lower magnitude than would be expected based on the mirrors' levels of image minification and the resulting visual angles experienced by drivers. Previous studies have investigated mirrors with radiuses of curvature up to 2000 mm. The present empirical study was designed to investigate the effects of mirrors with larger radiuses (up to 8900 mm). Such results are of interest because of the possible use of large radiuses in some aspheric mirror designs, and because of the information they provide about the basic mechanisms by which convex mirrors affect distance perception.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Comparison of Diesel Oxidation Catalyst Performance on an Engine and a Gas Flow Reactor

2007-04-16
2007-01-0231
This paper analyzes and compares reactor and engine behavior of a diesel oxidation catalyst (DOC) in the presence of conventional diesel exhaust and low temperature premixed compression ignition (PCI) diesel exhaust. Surrogate exhaust mixtures of n-undecane (C11H24), ethene (C2H4), CO, O2, H2O, NO and N2 are defined for conventional and PCI combustion and used in the gas flow reactor tests. Both engine and reactor tests use a DOC containing platinum, palladium and a hydrocarbon storage component (zeolite). On both the engine and reactor, the composition of PCI exhaust increases light-off temperature relative to conventional combustion. However, while nominal conditions are similar, the catalyst behaves differently on the two experimental setups. The engine DOC shows higher initial apparent HC conversion efficiencies because the engine exhaust contains a higher fraction of trappable (i.e., high boiling point) HC.
Technical Paper

Reliability Analysis of Dynamometer Loading Parameters during Vehicle Cell Testing

2007-04-16
2007-01-0600
In automotive testing, a chassis dynamometer is typically used, during cell testing, to evaluate vehicle performance by simulating actual driving conditions. The use of indoor cell testing has the advantage of running controlled tests where the cell temperature and humidity and solar loads can be well controlled. Driving conditions such as vehicle speed, wind speed and grade can be also controlled. Thus, repeated tests can be conducted with minimum test variations. The tractive effort required at the wheels of a vehicle for a given set of operating parameters is determined by taking into account a set of variables which affect vehicle performance. The forces considered in determination of the tractive effort include the constant friction force, variable friction force due to mechanical and tire friction, forces due to inertia and forces due to aerodynamic and wind effects. In addition, forces due to gravity are considered when road grades are simulated.
Technical Paper

Simulation Process to Investigate Suspension Sensitivity to Brake Judder

2007-04-16
2007-01-0590
Brake judder, which is a low frequency excitation of the suspension and thus, the body structure during low-G braking, is mainly felt at the steering wheel and throughout the vehicle structure. Brake judder is a problem that costs manufacturers millions of dollars in warranty cost and undesirable trade offs. The magnitude of judder response depends not only on the brake torque variation, but also on the suspension design character-istics. This paper discusses the judder simulation process using ADAMS software to investigate the suspension design sensitivity to the first order brake judder performance. The paper recommends “tuning knobs” to suspension designers and vehicle development engineers to resolve issues in the design and development stages. Various suspension design varia-bles including geometry and compliances as well as brake related characteristics were investigated.
Technical Paper

Correlating an Air Motion Number to Combustion Metrics and Initial Flame Kernel Development

2007-04-16
2007-01-0653
This study attempts to develop a correlation between an airflow motion number, combustion burn rates, and initial flame kernel development. To accomplish this task, several motion plates were evaluated on a flowbench in order to calculate a motion number that would represent the dynamic motion in the combustion chamber. Afterwards, the plates were tested on a spark ignited engine at several part throttle conditions while gathering cylinder pressure measurements. These cylinder pressure measurements would then yield the combustion burn rates for each plate. In addition to the combustion measurements, the flame kernel growth, velocity and direction of the flame kernel were measured using an AVL Visio-flame. Finally, the data was evaluated and an attempt to correlate the motion number of the plates to the different measurements for describing combustion was made.
Technical Paper

Optimization of Head Impact Waveform to Minimize HIC

2007-04-16
2007-01-0759
To mitigate head impact injuries of vehicle occupants in impact accidents, the FMVSS 201 requires padding of vehicle interior so that under the free-moving-head-form impact, the head injury criterion (HIC) is below the limit. More recently, pedestrian head impact on the vehicle bonnet has been a subject being studied and regulated as requirements to the automobile manufacturers. Over the years, the square wave has been considered as the best waveform for head impacts, although it is impractical to achieve. This paper revisits the head impact topic and challenges the optimality of aiming at the square waveform. It studies several different simple waveforms, with the objective to achieve minimal HIC or minimal crush space required in head-form impacts. With that it is found that many other waveforms can be more efficient and more practical than the square wave, especially for the pedestrian impact.
Technical Paper

Algorithmic Maintenance of a Diesel Engine Electronic Fuel Feed Controller by Criterion of the Content of Soot in Exhaust Gas

2007-04-16
2007-01-0973
The feature of offered algorithm is that it allows, without record and analysis of the display diagram, to estimate a running cycle of a diesel engine parameters which characterize ecological and economic performances. The mathematical model described in report allows to determine connection of coefficient of filling, pressure and temperature of air boost, factor of excess of air with effectiveness ratio of combustion and contents of soot in exhaust gas and to take into account this connection at a choice initial data for control fuel feed or for elaboration of diesel engine dynamic model. The algorithm incorporated, for example, in the microcontroller of an electronic fuel feed controller allows analyzing the sensors data and theoretically determine of smoke amount in the exhaust gases for chosen cycle of fuel feed. The restriction of smoke is possible by criterion dD/dGT, where D - contents of soot in exhaust gas and GT - fuel cycle submission under the program-adaptive schema.
Technical Paper

Advantages of Adaptive Wall Wind Tunnel Technology: A CFD Study for Testing Open Wheel Race Cars

2007-04-16
2007-01-1048
The primary advantage of an Adaptive Wall wind tunnel is that the test section walls and ceiling are contoured to closely approximate the ‘open road' flowfield around the test vehicle. This reproduction of the open road flowfield then results in aerodynamic forces and moments on the test vehicle that are consistent with actual open road forces and moments. Aerodynamic data measured in the adaptive wall test section do not require blockage corrections for adjusting the data to open road results. Extensive full scale experiments, published scale model studies, and Computational Fluid Dynamics (CFD) studies have verified the simulation capability of adaptive wall technology. For the CFD study described here, high-downforce, open-wheel race cars were studied. The numerical simulations with a race car in an Adaptive Wall Test Section (AWTS) wind tunnel are compared with simulations in ‘free air' condition and in a closed wall test section.
Technical Paper

Shock Absorber Force and Velocity Sensitivity to Its Damping Characteristics

2007-04-16
2007-01-1349
In this study, a full vehicle with durability tire model established with ADAMS is applied to simulate the dynamic behavior of the vehicle under severe rough road proving ground events, where the shock force-velocity characteristics are modeled as nonlinear curves and multi-stage representations, respectively. The shock forces and velocities at each corner are resolved and through full factorial DOE, the shock forces and velocities response surface models are established to analyze the sensitivities of shock force and velocity to the shock damping characteristics.
Technical Paper

A Fatigue Crack Growth Model for Spot Welds in Square-Cup and Lap-Shear Specimens under Cyclic Loading Conditions

2007-04-16
2007-01-1373
A fatigue crack growth model is adopted in this paper to investigate the fatigue lives of resistance spot welds in square-cup and lap-shear specimens of dual phase, low carbon and high strength steels under cyclic loading conditions. The fatigue crack growth model is based on the global stress intensity factor solutions for main cracks, the local stress intensity factor solutions for kinked cracks as functions of the kink length, the experimentally determined kink angles, and the Paris law for kinked crack propagation. The predicted fatigue lives based on the fatigue crack growth model are then compared with the experimental data. The results indicate that the fatigue life predictions based on the fatigue crack growth model are in agreement with or lower than the experimental results.
Technical Paper

Stamping Effect on Oil Canning and Dent Resistance Performances of an Automotive Roof Panel

2007-04-16
2007-01-1696
The objective of this paper is to investigate the effect of stamping process on oil canning and dent resistance performances of an automotive roof panel. Finite element analysis of stamping processes was carried out using LS-Dyna to obtain thickness and plastic strain distributions under various forming conditions. The forming results were mapped onto the roof model by an in-house developed mapping code. A displacement control approach using an implicit FEM code ABAQUS/Standard was employed for oil canning and denting analysis. An Auto/Steel Partnership Standardized Test Procedure for Dent Resistance was employed to establish the analysis model and to determine the dent and oil canning loads. The results indicate that stamping has a positive effect on dent resistance and a negative effect on oil canning performance. As forming strains increase, dent resistance increases while the oil canning load decreases.
Technical Paper

A Minimum-Effort Motion Algorithm for Digital Human Models

2003-06-17
2003-01-2228
A new realistic motion control algorithm for digital human models is presented in this paper based on the principle of effort minimization. The proposed algorithm is developed through an innovative mathematical model to make the applications more flexible and more global, especially for the visualization of human motions in automotive assembly operations. The central idea of this unique model is to interpret the solution of the homogeneous Lagrange equation for a mannequin as the origin of dynamic motion. Furthermore, a digital human possesses about 42 joints over the main body except the head, fingers and toes, and offers a large room of kinematic redundancy. We have found 14 new 3-D independent motion markers assigned over the human body to constitute a Cartesian coordinate system, under which a minimum-effort based dynamic control scheme is developed using a state-feedback linearization procedure.
X