Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparison of Wind Tunnel Configurations for Testing Closed-Wheel Race Cars: A CFD Study

2006-12-05
2006-01-3620
This paper investigates the aerodynamic simulation accuracy of several types of wind tunnel test sections. Computational simulations were performed with a closed wheel race car in an 11.0 m2 adaptive wall, a 16.8 m2 open jet, and a 29.7 m2 slotted wall test section, corresponding to model blockage ratios of 20.9%, 13.7%, and 7.7%, respectively. These are compared to a simulation performed in a nearly interference-free condition having a blockage ratio of 0.05%, which for practical purposes of comparison, is considered a free air condition. The results demonstrate that the adaptive wall most closely simulates the free air condition without the need for interference corrections. In addition to this advantage, the significantly smaller size of the adaptive wall test section offers lower capital and operating costs.
Technical Paper

Multi-Disciplinary Aerodynamics Analysis for Vehicles: Application of External Flow Simulations to Aerodynamics, Aeroacoustics and Thermal Management of a Pickup Truck

2007-04-16
2007-01-0100
During the design process for a vehicle, the CAD surface geometry becomes available at an early stage so that numerical assessment of aerodynamic performance may accompany the design of the vehicle's shape. Accurate prediction requires open grille models with detailed underhood and underbody geometry with a high level of detail on the upper body surface, such as moldings, trim and parting lines. These details are also needed for aeroacoustics simulations to compute wall-pressure fluctuations, and for thermal management simulations to compute underhood cooling, surface temperatures and heat exchanger effectiveness. This paper presents the results of a significant effort to capitalize on the investment required to build a detailed virtual model of a pickup truck in order to simultaneously assess performance factors for aerodynamics, aeroacoustics and thermal management.
Technical Paper

Advantages of Adaptive Wall Wind Tunnel Technology: A CFD Study for Testing Open Wheel Race Cars

2007-04-16
2007-01-1048
The primary advantage of an Adaptive Wall wind tunnel is that the test section walls and ceiling are contoured to closely approximate the ‘open road' flowfield around the test vehicle. This reproduction of the open road flowfield then results in aerodynamic forces and moments on the test vehicle that are consistent with actual open road forces and moments. Aerodynamic data measured in the adaptive wall test section do not require blockage corrections for adjusting the data to open road results. Extensive full scale experiments, published scale model studies, and Computational Fluid Dynamics (CFD) studies have verified the simulation capability of adaptive wall technology. For the CFD study described here, high-downforce, open-wheel race cars were studied. The numerical simulations with a race car in an Adaptive Wall Test Section (AWTS) wind tunnel are compared with simulations in ‘free air' condition and in a closed wall test section.
Technical Paper

The DaimlerChrysler Full-Scale Aeroacoustic Wind Tunnel

2003-03-03
2003-01-0426
This paper provides an overview of the design and commissioning results for the DaimlerChrysler full-scale vehicle Aeroacoustic Wind Tunnel (AAWT) brought online in 2002. This wind tunnel represents the culmination of the plan for aeroacoustic facilities at the DaimlerChrysler Corporation Technical Center (DCTC) in Auburn Hills, Michigan. The competing requirements of excellent flow quality, low background noise, and constructed cost within budget were optimized using Computational Fluid Dynamics, extensive acoustic modeling, and a variety of scale-model experimental results, including dedicated experiments carried out in the 3/8-scale pilot wind tunnel located at DCTC. The paper describes the project history, user requirements, and design philosophy employed in realizing the facility. The AAWT meets all of DaimlerChrylser's performance targets, and was delivered on schedule. The commissioning results presented in this paper show its performance to be among the best in the world.
X