Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Semi-Empirical Model for Fast Residual Gas Fraction Estimation in Gasoline Engines

2006-10-16
2006-01-3236
Accurate accounting for fresh charge (fuel and air) along with trapped RGF is essential for the subsequent thermodynamic analysis of combustion in gasoline engines as well as for on-line and real-time quantification as relevant to engine calibration and control. Cost and complexity of such techniques renders direct measurement of RGF impractical for running engines. In this paper, an empirically-based approach is proposed for on-line RGF, based on an existing semi-empirical model [1]. The model developed expands the range over which the semi-empirical model is valid and further improves its accuracy. The model was rigorously validated against a well correlated GT-POWER model as well as results from 1D gas exchange model [2]. Overall, using this model, RGF estimation error was within ∼1.5% for a wide range of engine operating conditions. The model will be implemented in Dyno development and calibration at Chrysler Group.
Technical Paper

Opposed Piston Opposed Cylinder (opoc™) 5/10 kW Heavy Fuel Engine for UAVs and APUs

2006-04-03
2006-01-0278
The opposed piston opposed cylinder (opoc™) engine concept has been demonstrated as an engine concept with high specific power density and high power to volume ratio. The engine has several potential applications, including use as an auxiliary power unit (APU) in various commercial and military applications and as the primary power source for small unmanned air vehicles (UAVs). An engine in this power range operating on heavy fuels (e.g. JP5, JP8, DF2) is not typically available. The engine uses a two-cycle supercharged uniflow scavenging system with asymmetric port timing and will run at speeds between 8,000 and 12,000 rpm. The unique design of the opoc™ engine produces a piston speed that is half the speed of a typical crankshaft engine running at the same speed. Uniflow scavenging produces gas exchange efficiencies rivaling those of four-cycle engines. The design also leads to reduced in-cylinder heat losses. Furthermore, the opoc™ engine is fully balanced.
X