Refine Your Search

Search Results

Viewing 1 to 5 of 5
Journal Article

Impact of Fuel Sprays on In-Cylinder Flow Length Scales in a Spark-Ignition Direct-Injection Engine

2017-03-28
2017-01-0618
The interaction of fuel sprays and in-cylinder flow in direct-injection engines is expected to alter kinetic energy and integral length scales at least during some portions of the engine cycle. High-speed particle image velocimetry was implemented in an optical four-valve, pent-roof spark-ignition direct-injection single-cylinder engine to quantify this effect. Non-firing motored engine tests were performed at 1300 RPM with and without fuel injection. Two fuel injection timings were investigated: injection in early intake stroke represents quasi-homogenous engine condition; and injection in mid compression stroke mimics the stratified combustion strategy. Two-dimensional crank angle resolved velocity fields were measured to examine the kinetic energy and integral length scale through critical portions of the engine cycle. Reynolds decomposition was applied on the obtained engine flow fields to extract the fluctuations as an indicator for the turbulent flow.
Technical Paper

Design and Development of a Turbocharged E85 Engine for Formula SAE Racing

2008-06-23
2008-01-1774
A summary of the design and development process for a Formula SAE engine is described. The focus is on three fundamental elements on which the entire engine package is based. The first is engine layout and displacement, second is the fuel type, and third is the air induction method. These decisions lead to a design around a 4-cylinder 600cc motorcycle engine, utilizing a turbocharger and ethanol E-85 fuel. Concerns and constraints involved with vehicle integration are also highlighted. The final design was then tested on an engine dynamometer, and finally in the 2007 M-Racing FSAE racecar.
Technical Paper

Characterization of Combustion and NO Formation in a Spray-Guided Gasoline Direct-Injection Engine using Chemiluminescence Imaging, NO-PLIF, and Fast NO Exhaust Gas Analysis

2005-05-11
2005-01-2089
The spatial and temporal formation of nitric oxide in an optical engine operated with iso-octane fuel under spray-guided direct-injection conditions was studied with a combination of laser-induced fluorescence imaging, UV-chemiluminescence, and cycle resolved NO exhaust gas analysis. NO formation during early and late (homogeneous vs. stratified) injection conditions were compared. Strong spatial preferences and cyclic variations in the NO formation were observed depending on engine operating conditions. While engine-out NO levels are substantially lower for stratified engine operation, cyclic variations of NO formation are substantially higher than for homogeneous, stoichiometric operation.
Technical Paper

Inhomogeneities in HCCI Combustion: An Imaging Study

2005-05-11
2005-01-2122
A four-valve-pentroof, direct-injection, optical engine fueled with n-heptane has been operated at four different steady-state HCCI operating conditions including 10% and 65% residuals, both at low and high swirl conditions. Both, planar toluene LIF and volume chemiluminescence show large scale inhomogeneity in the ensemble averaged images. The interpretation of the toluene-tracer LIF signals (when premixed with the fresh-air charge) as a marker for reaction homogeneity is discussed. A binarization scheme and a statistical analysis of the LIF images were applied to the per-cycle planar-LIF images revealing inhomogeneities both from cycle-to-cycle and within the regions of individual cycles that track with the average heat release rate. Comparison of these two homogeneity metrics between the four operating conditions reveals weak but discernable differences.
Technical Paper

Transient Spray Cone Angles in Pressure-Swirl Injector Sprays

2004-10-25
2004-01-2939
The transient cone angle of pressure swirl sprays from injectors intended for use in gasoline direct injection engines was measured from 2D Mie scattering images. A variety of injectors with varying nominal cone angle and flow rate were investigated. The general cone angle behavior was found to correlate well qualitatively with the measured fuel line pressure and was affected by the different injector specifications. Experimentally measured modulations in cone angle and injection pressure were forced on a comprehensive spray simulation to understand the sensitivity of pulsating injector boundary conditions on general spray structure. Ignoring the nozzle fluctuations led to a computed spray shape that inadequately replicated the experimental images; hence, demonstrating the importance of quantifying the injector boundary conditions when characterizing a spray using high-fidelity simulation tools.
X