Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

DC Bus Regulation with a Flywheel Energy Storage System

2002-10-29
2002-01-3229
This paper describes the DC bus regulation control algorithm for the NASA flywheel energy storage system during charge, charge reduction and discharge modes of operation. The algorithm was experimentally verified in [1] and this paper presents the necessary models for simulation. Detailed block diagrams of the controller algorithm are given. It is shown that the flywheel system and the controller can be modeled in three levels of detail depending on the type of analysis required. The three models are explained and then compared using simulation results.
Technical Paper

A Pilot Study of the Effects of Vertical Ride Motion on Reach Kinematics

2003-03-03
2003-01-0589
Vehicle motions can adversely affect the ability of a driver or occupant to quickly and accurately push control buttons located in many advanced vehicle control, navigation and communications systems. A pilot study was conducted using the U.S. Army Tank Automotive and Armaments Command (TACOM) Ride Motion Simulator (RMS) to assess the effects of vertical ride motion on the kinematics of reaching. The RMS was programmed to produce 0.5 g and 0.8 g peak-to-peak sinusoidal inputs at the seat-sitter interface over a range of frequencies. Two participants performed seated reaching tasks to locations typical of in-vehicle controls under static conditions and with single-frequency inputs between 0 and 10 Hz. The participants also held terminal reach postures during 0.5 to 32 Hz sine sweeps. Reach kinematics were recorded using a 10-camera VICON motion capture system. The effects of vertical ride motion on movement time, accuracy, and subjective responses were assessed.
Technical Paper

Reliability Analysis of Composite Inflatable Space Structures Considering Fracture Failure

2014-04-01
2014-01-0715
Inflatable space structures can have lower launching cost and larger habitat volume than their conventional rigid counterparts. These structures are made of composite laminates, and they are flexible when folded and partially inflated. They contain light-activated resins, and can be cured with the sun light after being inflated in space. A spacecraft can burst due to cracks caused by meteor showers or debris. Therefore, it is critical to identify the important fracture failure modes, and assess their probability. This information will help a designer minimize the risk of failure and keep the mass and cost low. This paper presents a probabilistic approach for finding the required thickness of an inflatable habitat shell for a prescribed reliability level, and demonstrates the superiority of probabilistic design to its deterministic counterpart.
X