Refine Your Search

Topic

Author

Search Results

Journal Article

Reliability and Cost Trade-Off Analysis of a Microgrid

2018-04-03
2018-01-0619
Optimizing the trade-off between reliability and cost of operating a microgrid, including vehicles as both loads and sources, can be a challenge. Optimal energy management is crucial to develop strategies to improve the efficiency and reliability of microgrids, as well as new communication networks to support optimal and reliable operation. Prior approaches modeled the grid using MATLAB, but did not include the detailed physics of loads and sources, and therefore missed the transient effects that are present in real-time operation of a microgrid. This article discusses the implementation of a physics-based detailed microgrid model including a diesel generator, wind turbine, photovoltaic array, and utility. All elements are modeled as sources in Simulink. Various loads are also implemented including an asynchronous motor. We show how a central control algorithm optimizes the microgrid by trying to maximize reliability while reducing operational cost.
Journal Article

Reanalysis of Linear Dynamic Systems using Modified Combined Approximations with Frequency Shifts

2016-04-05
2016-01-1338
Weight reduction is very important in automotive design because of stringent demand on fuel economy. Structural optimization of dynamic systems using finite element (FE) analysis plays an important role in reducing weight while simultaneously delivering a product that meets all functional requirements for durability, crash and NVH. With advancing computer technology, the demand for solving large FE models has grown. Optimization is however costly due to repeated full-order analyses. Reanalysis methods can be used in structural vibrations to reduce the analysis cost from repeated eigenvalue analyses for both deterministic and probabilistic problems. Several reanalysis techniques have been introduced over the years including Parametric Reduced Order Modeling (PROM), Combined Approximations (CA) and the Epsilon algorithm, among others.
Journal Article

Computational Efficiency Improvements in Topography Optimization Using Reanalysis

2016-04-05
2016-01-1395
To improve fuel economy, there is a trend in automotive industry to use light weight, high strength materials. Automotive body structures are composed of several panels which must be downsized to reduce weight. Because this affects NVH (Noise, Vibration and Harshness) performance, engineers are challenged to recover the lost panel stiffness from down-gaging in order to improve the structure borne noise transmitted through the lightweight panels in the frequency range of 100-300 Hz where most of the booming and low medium frequency noise occurs. The loss in performance can be recovered by optimized panel geometry using beading or damping treatment. Topography optimization is a special class of shape optimization for changing sheet metal shapes by introducing beads. A large number of design variables can be handled and the process is easy to setup in commercial codes. However, optimization methods are computationally intensive because of repeated full-order analyses.
Technical Paper

A Two-Layer Soot Model for Hydrocarbon Fuel Combustion

2020-04-14
2020-01-0243
Experimental studies of soot particles showed that the intensity ratio of amorphous and graphite layers measured by Raman spectroscopy correlates to soot oxidation reactivities, which is very important for regeneration of the diesel particulate filters and gasoline particulate filters. This physical mechanism is absent in all soot models. In the present paper, a novel two-layer soot model was proposed that considers the amorphous and graphite layers in the soot particles. The soot model considers soot inception, soot surface growth, soot oxidation by O2 and OH, and soot coagulation. It is assumed that amorphous-type soot forms from fullerene. No soot coagulation is considered in the model between the amorphous- and graphitic-types of soot. Benzene is taken as the soot precursor, which is formed from acetylene. The model was implemented into a commercial CFD software CONVERGE using user defined functions. A diesel engine case was simulated.
Journal Article

Efficient Re-Analysis Methodology for Probabilistic Vibration of Large-Scale Structures

2008-04-14
2008-01-0216
It is challenging to perform probabilistic analysis and design of large-scale structures because probabilistic analysis requires repeated finite element analyses of large models and each analysis is expensive. This paper presents a methodology for probabilistic analysis and reliability based design optimization of large scale structures that consists of two re-analysis methods; one for estimating the deterministic vibratory response and another for estimating the probability of the response exceeding a certain level. The deterministic re-analysis method can analyze efficiently large-scale finite element models consisting of tens or hundreds of thousand degrees of freedom and large numbers of design variables that vary in a wide range. The probabilistic re-analysis method calculates very efficiently the system reliability for many probability distributions of the design variables by performing a single Monte Carlo simulation.
Journal Article

Design under Uncertainty using a Combination of Evidence Theory and a Bayesian Approach

2008-04-14
2008-01-0377
Early in the engineering design cycle, it is difficult to quantify product reliability due to insufficient data or information to model uncertainties. Probability theory can not be therefore, used. Design decisions are usually based on fuzzy information which is imprecise and incomplete. Various design methods such as Possibility-Based Design Optimization (PBDO) and Evidence-Based Design Optimization (EBDO) have been developed to systematically treat design with non-probabilistic uncertainties. In practical engineering applications, information regarding the uncertain variables and parameters may exist in the form of sample points, and uncertainties with sufficient and insufficient information may exist simultaneously. Most of the existing optimal design methods under uncertainty can not handle this form of incomplete information. They have to either discard some valuable information or postulate the existence of additional information.
Journal Article

Optimal and Robust Design of the PEM Fuel Cell Cathode Gas Diffusion Layer

2008-04-14
2008-01-1217
The cathode gas diffusion layer (GDL) is an important component of polymer electrolyte membrane (PEM) fuel cell. Its design parameters, including thickness, porosity and permeability, significantly affect the reactant transport and water management, thus impacting the fuel cell performance. This paper presents an optimization study of the GDL design parameters with the objective of maximizing the current density under a given voltage. A two-dimensional single-phase PEM fuel cell model is used. A multivariable optimization problem is formed to maximize the current density at the cathode under a given electrode voltage with respect to the GDL parameters. In order to reduce the computational effort and find the global optimum among the potential multiple optima, a global metamodel of the actual CFD-based fuel cell simulation, is adaptively generated using radial basis function approximations.
Journal Article

Random Vibration Testing Development for Engine Mounted Products Considering Customer Usage

2013-04-08
2013-01-1007
In this paper, the development of random vibration testing schedules for durability design verification of engine mounted products is presented, based on the equivalent fatigue damage concept and the 95th-percentile customer engine usage data for 150,000 miles. Development of the 95th-percentile customer usage profile is first discussed. Following that, the field engine excitation and engine duty cycle definition is introduced. By using a simplified transfer function of a single degree-of-freedom (SDOF) system subjected to a base excitation, the response acceleration and stress PSDs are related to the input excitation in PSD, which is the equivalent fatigue damage concept. Also, the narrow-band fatigue damage spectrum (FDS) is calculated in terms of the input excitation PSD based on the Miner linear damage rule, the Rayleigh statistical distribution for stress amplitude, a material's S-N curve, and the Miles approximate solution.
Technical Paper

EV Penetration Impacts on Environmental Emissions and Operational Costs of Power Distribution Systems

2020-04-14
2020-01-0973
This research assesses the integration of different levels of electric vehicles (EVs) in the distribution system and observes its impacts on environmental emissions and power system operational costs. EVs can contribute to reducing the environmental emission from two different aspects. First, by replacing the traditional combustion engine cars with EVs for providing clean and environment friendly transportation and second, by integrating EVs in the distribution system through the V2G program, by providing power to the utility during peak hours and reducing the emission created by hydrocarbon dependent generators. The PG&E 69-bus distribution system (DS) is used to simulate the integration of EVs and to perform energy management to assess the operational costs and emissions. The uncertainty of driving patterns of EVs are considered in this research to get more accurate results.
Journal Article

Comparison of Tribological Performance of WS2 Nanoparticles, Microparticles and Mixtures Thereof

2014-04-01
2014-01-0949
Tribological performance of tungsten sulfide (WS2) nanoparticles, microparticles and mixtures of the two were investigated. Previous research showed that friction and wear reduction can be achieved with nanoparticles. Often these improvements were mutually exclusive, or achieved under special conditions (high temperature, high vacuum) or with hard-to-synthesize inorganic-fullerene WS2 nanoparticles. This study aimed at investigating the friction and wear reduction of WS2 of nanoparticles and microparticles that can be synthesized in bulk and/or purchased off the shelf. Mixtures of WS2 nanoparticles and microparticles were also tested to see if a combination of reduced friction and wear would be achieved. The effect of the mixing process on the morphology of the particles was also reported. The microparticles showed the largest reduction in coefficient of friction while the nanoparticles showed the largest wear scar area reduction.
Technical Paper

Optimal Idle Speed Control of an Automotive Engine

1998-02-23
981059
An optimal idle speed control (ISC) system for an automotive engine is introduced in this paper. The system is based on a non-linear model including time delay. This model is linearized at the nominal operating point. The effect of the time delay on control is compensated by prediction. This methodology is applied to a Chrysler 2.0 liter 4-cylinder SOHC (Single Overhead Cam) engine. All of the unknown parameters of the model are identified by using the normal operating data from the test engine. Based on these identified parameters, an optimal controller was designed and implemented using a rapid prototyping system. Numerous experiments of the optimal controller were carried out at the Chrysler Technology Center in Auburn Hills, Michigan. The performance was compared to that of the existing controller. The results showed that the optimal controller has the capability to effectively control the engine idle speed under a variety of accessory loads and disturbances.
Technical Paper

Engine Simulation of a Restricted FSAE Engine, Focusing on Restrictor Modelling

2006-12-05
2006-01-3651
One-dimensional (1D) engine simulation packages are limited in modeling flows through an adverse pressure gradient where boundary layer separation is more likely to occur, as in the case of the diffuser part of the restrictor. The restrictor modeling difficulty usually manifests itself as an engine model that consumes a lot of effort (both computational and from the user) in the modeling of the restrictor. The approach sought in this work was to provide a flow vs pressure drop dependency to the code such that it does not consume too much effort in the analysis of the restrictor. This approach is similar to that used for the valve flow, where a look up table is typically provided for determining the flow. Experimentally determined flow measurements on a thin-plate orifice, a short restrictor and a long restrictor are presented and discussed. The developed model gave excellent results in an acyclic steady-state simulation and is being integrated in the full engine model.
Technical Paper

Relative Contributions of Intake and Exhaust Tuning on SI Engine Breathing - A Computational Study

2007-04-16
2007-01-0492
This study examines the contributions and interactions of intake and exhaust tuning on a 4-stroke single-cylinder engine for various engine speeds and valve timings. The parametric study was performed using a 1-D engine simulation model, the combustion sub-model of which was calibrated based on experimental pressure data. Mechanisms by which tuning changes the volumetric efficiency of an engine were studied. Simulation results are compared with established empirical correlations which predict pipe lengths for maximum volumetric efficiency. It was found that intake tuning has a more dominant role in the breathing capability of the engine compared to exhaust tuning and that both are independent from each other. Valve timing was found to have no effect on intake tuning characteristics but to affect exhaust tuning.
Technical Paper

Piston Secondary Dynamics Considering Elastohydrodynamic Lubrication

2007-04-16
2007-01-1251
An analytical method is presented in this paper for simulating piston secondary dynamics and piston-bore contact for an asymmetric half piston model including elastohydrodynamic (EHD) lubrication at the bore-skirt interface. A piston EHD analysis is used based on a finite-difference formulation. The oil film is discretized using a two-dimensional mesh. For improved computational efficiency without loss of accuracy, the Reynolds’ equation is solved using a perturbation approach which utilizes an “influence zone” concept, and a successive over-relaxation solver. The analysis includes several important physical attributes such as bore distortion effects due to mechanical and thermal deformation, inertia loading and piston barrelity and ovality. A Newmark-Beta time integration scheme combined with a Newton-Raphson linearization, calculates the piston secondary motion.
Technical Paper

Prediction of Tire-Snow Interaction Forces Using Metamodeling

2007-04-16
2007-01-1511
High-fidelity finite element (FE) tire-snow interaction models have the advantage of better understanding the physics of the tire-snow system. They can be used to develop semi-analytical models for vehicle design as well as to design and interpret field test results. For off-terrain conditions, there is a high level of uncertainties inherent in the system. The FE models are computationally intensive even when uncertainties of the system are not taken into account. On the other hand, field tests of tire-snow interaction are very costly. In this paper, dynamic metamodels are established to interpret interaction forces from FE simulation and to predict those forces by using part of the FE data as training data and part as validation data. Two metamodels are built based upon the Krieging principle: one has principal component analysis (PCA) taken into account and the other does not.
Technical Paper

Numerical Investigation of Transient Flow Effects on the Separation Parameters of a Reverse Flow Type Cyclone Particle Separator

2008-04-14
2008-01-0419
This study is concerned with computational fluid dynamics (CFD) simulations of flow in an automotive reverse flow type cyclone particle separator using the Reynolds Stress Model (RSM) turbulence model. Steady simulations were found to never fully converge, with pressure, velocity and vorticity results exhibiting small oscillations as the solution was iterated further. Transient simulations showed the presence of a main vortex precession that resulted in periodic fluctuations of the flow parameters. Fourier analysis was used to characterize this semi-periodic flow feature and to assess its effect on the two main performance measures of the cyclone: overall pressure drop and particle separation efficiency.
Technical Paper

Numerical Investigation of the Sensitivity of the Performance Criteria of an Automotive Cyclone Particle Separator to CFD Modeling Parameters

2009-04-20
2009-01-1176
Predicting the optimum performance parameters of an automotive cyclone particle separator (separation efficiency and pressure drop) using computational fluid dynamics by varying its geometrical parameters is challenging and a time consuming process due to the highly swirling nature of the flow. This study presents results of three investigations of the performance and design of a cyclone separator: a sensitivity analysis, deterministic optimization and a reliability based design optimization. All three cases involved variation of four geometric parameters that characterize the design of the cyclone.
Technical Paper

An Evaluation of Electrical and Thermal Conductivity and Mechanical Behaviors of a Silicon Rubber based Composite Material for PEM Fuel Cell

2009-04-20
2009-01-1005
With increasing demand for cost-effective fuel cells, it is essential to investigate alternative materials for components of the fuel cells. The objective of this paper is to implement elastomeric materials (silicon rubber) for the use of bipolar plates in a polymer electrolyte membrane fuel cell. Two different types of conductive fillers, a graphite fiber and flake, were added at different concentrations to a two-component silicone rubber slurry. Electrical, thermal and mechanical properties of the composite material were investigated. Comparable electrical and thermal conductivities were achieved to that of commercially available plates. The silicone rubber based composite material maintained elastomeric properties for improved sealing of cell fluid reactants and products.
Technical Paper

Investigation of Fuel Cell Performance and Water Accumulation in a Transparent PEM Fuel Cell

2009-04-20
2009-01-1006
Polymer Electrolyte Membrane (PEM) fuel cells have grown in research and development for many applications due to their high efficiency and humble operating condition requirements. Water management in the cathode region of the PEM fuel cell is an essential and sensitive phenomenon for cold environments and fuel cell’s performance. This paper investigates the behavior of water production by constructing a transparent-cathode PEM fuel cell. The effects of pressure, relative humidity, and cathode stoichiometric ratio on the production of water as a function of time were studied. Each test set is compared to a reference state. The images of water liquid accumulation inside the cathode bipolar plate channels are shown with the corresponding polarization curves.
Technical Paper

Transverse Vibration of a Composite Shaft

2009-05-19
2009-01-2066
The advantages of having higher stiffness to weight ratio and strength to weigh ratio that composite materials have resulted in an increased interest in them. In automotive engineering, the weight savings has positive impacts on other attributes like fuel economy and possible noise, vibration and harshness (NVH). The driveline of an automotive system can be a target for possible use of composite materials. The design of the driveshaft of an automotive system is primarily driven by its natural frequency. This paper presents an exact solution for the vibration of a composite driveshaft with intermediate joints. The joint is modeled as a frictionless internal hinge. The Euler-Bernoulli beam theory is used. Lumped masses are placed on each side of the joint to represent the joint mass. Equations of motion are developed using the appropriate boundary conditions and then solved exactly.
X