Refine Your Search

Topic

Affiliation

Search Results

Journal Article

The Impact of Biodiesel on Particle Number, Size and Mass Emissions from a Euro4 Diesel Vehicle

2010-04-12
2010-01-0796
New European emissions legislation (Euro5) specifies a limit for Particle Number (PN) emissions and therefore drives measurement of PN during vehicle development and homologation. Concurrently, the use of biofuel is increasing in the marketplace, and Euro5 specifies that reference fuel must contain a bio-derived portion. Work was carried out to test the effect of fuels containing different levels of Fatty Acid Methyl Ester (FAME) on particle number, size, mass and composition. Measurements were conducted with a Cambustion Differential Mobility Spectrometer (DMS) to time-resolve sub-micron particles (5-1000nm), and a Horiba Solid Particle Counting System (SPCS) providing PN data from a Euro5-compliant measurement system. To ensure the findings are relevant to the modern automotive business, testing was carried out on a Euro4 compliant passenger car fitted with a high-pressure common-rail diesel engine and using standard homologation procedures.
Journal Article

Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines

2010-04-12
2010-01-1132
The recent development of diesel engine fuel injection systems has been dominated by how to manage the degrees of freedom that common rail multi-pulse systems now offer. A number of production engines already use four injection events while in research, work based on up to eight injection events has been reported. It is the degrees of freedom that lead to a novel experimental requirements. There is a potentially complex experimental program needed to simply understand how injection parameters influence the combustion process in steady state. Combustion behavior is not a continuum and as both injection and EGR rates are adjusted, distinct combustion modes emerge. Conventional calibration processes are severely challenged in the face of large number of degrees of freedom and as a consequence new development approaches are needed.
Journal Article

Real-Time Optimal Energy Management of Heavy Duty Hybrid Electric Vehicles

2013-04-08
2013-01-1748
The performance of energy flow management strategies is essential for the success of hybrid electric vehicles (HEVs), which are considered amongst the most promising solutions for improving fuel economy as well as reducing exhaust emissions. The heavy duty HEVs engaged in cycles characterized by start-stop configuration has attracted widely interests, especially in off-road applications. In this paper, a fuzzy equivalent consumption minimization strategy (F-ECMS) is proposed as an intelligent real-time energy management solution for heavy duty HEVs. The online optimization problem is formulated as minimizing a cost function, in terms of weighted fuel power and electrical power. A fuzzy rule-based approach is applied on the weight tuning within the cost function, with respect to the variations of the battery state-of-charge (SOC) and elapsed time.
Journal Article

Methodology for the Design of an Aerodynamic Package for a Formula SAE Vehicle

2014-04-01
2014-01-0596
Recent changes to the rules regarding aerodynamics within Formula SAE, combined with faster circuits at the European FSAE events, have made the implementation of aerodynamic devices, to add down-force, a more relevant topic. As with any race series it is essential that a detailed analysis is completed to establish the costs and benefits of including an aerodynamic package on the vehicle. The aim of the work reported here was to create a methodology that would fully evaluate all aspects of the package and conclude with an estimate of the likely gain in points at a typical FSAE event. The paper limits the analysis to a front and rear wing combination, but the approach taken can be applied to more complex aerodynamic packages.
Journal Article

Experimental Data for the Validation of Numerical Methods - SAE Reference Notchback Model

2014-04-01
2014-01-0590
The use of simulation tools by vehicle manufacturers to design, optimize and validate their vehicles is essential if they are to respond to the demands of their customers, to meet legislative requirements and deliver new vehicles ever more quickly. The use of such tools in the aerodynamics community is already widespread, but they remain some way from replacing physical testing completely. Further advances in simulation capabilities depend on the availability of high quality validation data so that simulation code developers can ensure that they are capturing the physics of the problems in all the important areas of the flow-field. This paper reports on an experimental program to generate such high quality validation data for a SAE 20 degree backlight angle notchback reference model.
Technical Paper

Co-Simulation Methods for Holistic Vehicle Design: A Comparison

2020-04-14
2020-01-1017
Vehicle development involves the design and integration of subsystems of different domains to meet performance, efficiency, and emissions targets set during the initial developmental stages. Before a physical prototype of a vehicle or vehicle powertrain is tested, engineers build and test virtual prototypes of the design(s) on multiple stages throughout the development cycle. In addition, controllers and physical prototypes of subsystems are tested under simulated signals before a physical prototype of the vehicle is available. Different departments within an automotive company tend to use different modelling and simulation tools specific to the needs of their specific engineering discipline. While this makes sense considering the development of the said system, subsystem, or component, modern holistic vehicle engineering requires the constituent parts to operate in synergy with one-another in order to ensure vehicle-level optimal performance.
Technical Paper

Effects of Direct Injection Timing and Air Dilution on the Combustion and Emissions Characteristics of Stratified Flame Ignited (SFI) Hybrid Combustion in a 4-Stroke PFI/DI Gasoline Engine

2020-04-14
2020-01-1139
Controlled Auto-Ignition (CAI) combustion can effectively improve the thermal efficiency of conventional spark ignition (SI) gasoline engines, due to shortened combustion processes caused by multi-point auto-ignition. However, its commercial application is limited by the difficulties in controlling ignition timing and violent heat release process at high loads. Stratified flame ignited (SFI) hybrid combustion, a concept in which rich mixture around spark plug is consumed by flame propagation after spark ignition and the unburned lean mixture closing to cylinder wall auto-ignites in the increasing in-cylinder temperature during flame propagation, was proposed to overcome these challenges.
Technical Paper

Numerical Investigations on Strong Knocking Combustion under Advanced Compression Ignition Conditions

2020-04-14
2020-01-1137
Homogeneous charge compression ignition (HCCI) combined with high compression ratio is an effective way to improve engines’ thermal efficiency. However, the severe thermodynamic conditions at high load may induce knocking combustion thus damage the engine body. In this study, advanced compression ignition knocking characteristics were parametrically investigated through RCM experiments and simulation analysis. First, the knocking characteristics were optically investigated. The experimental results show that there even exists detonation when the knock occurs thus the combustion chamber is damaged. Considering both safety and costs, the effects of different initial conditions were numerically investigated and the results show that knocking characteristics is more related to initial pressure other than initial temperature. The initial pressure has a great influence on peak pressure and knock intensity while the initial temperature on knock onset.
Technical Paper

Study on Combustion Information Feedback Based on the Combination of Virtual Model and Actual Angular Velocity Measurement

2020-04-14
2020-01-1151
Combustion closed-loop control is now being studied intensively for engineering applications to improve fuel economy. Currently, combustion closed-loop feedback control is usually based on the cylinder pressure signal, which is the most direct and exact signal that reflects engine working process. Although there were some relatively cheap types of in-cylinder pressure sensors, cylinder pressure sensors have not been widely applied because of their high price now. Moreover, the combustion analysis based on cylinder pressure imposes high requirements on the information acquisition capability of the current ECU, such as high acquisition and analog-digital conversion frequency and so on. For developing a low price and feasible technology, a new engine information feedback method based on model calculation and crank angular velocity measurement was proposed. A simplified combustion model was operated in ECU for the real-time calculation of cylinder pressure and combustion parameters.
Technical Paper

Analytical Rotordynamic Study of a High-Speed Gear Transmission System for Race Applications

2020-09-30
2020-01-1502
In motorsport power transmission systems, high-speed operation can be associated with significant rotordynamic effects. Changes in the natural frequencies of lateral (bending) vibrational modes as a function of spin speed are brought about by gyroscopic action linked to flexible shafts and mounted gear components. In the investigation of high-speed systems, it is important that these effects are included in the analysis in order to accurately predict the critical speeds encountered due to the action of the gear mesh and other sources of excitation. The rotordynamic behaviour of the system can interact with crucial physical parameters of the transmission, such as the stiffnesses of the gear mesh and rolling element-to-raceway contact in the bearings. In addition, the presence of the gear mesh acts to couple the lateral and torsional vibration modes of a dual-shaft transmission through which a torque flows.
Technical Paper

Prediction of Acoustic Emissions of Turbocharger Bearings

2020-09-30
2020-01-1504
Turbochargers are progressively used in modern automotive engines to enhance engine performance and reduce energy loss and adverse emissions. Use of turbochargers along with other modern technologies has enabled development of significantly downsized internal combustion engines. However, turbochargers are major sources of acoustic emissions in modern automobiles. Their acoustics has a distinctive signature, originating from fluid-structure interactions. The bearing systems of turbochargers also constitute an important noise source. In this case, the acoustic emissions can mainly be attributed to hydrodynamic pressure fluctuations of the lubricant film. The developed analytical model determines the lubricant pressure distribution in the floating journal bearings used mainly in the modern turbocharges. This allows for an estimation of acoustic emissions.
Technical Paper

On Predicting Automotive Clutch Torsional Vibrations

2020-09-30
2020-01-1508
Automotive clutches are prone to rigid body torsional vibrations during engagement, a phenomenon referred to as take-up judder. This is also accompanied by fore and aft vehicle motions. Aside from driver behaviour in sudden release of clutch pedal (resulting in loss of clamp load), and type and state of friction lining material, the interfacial slip speed and contact temperature can significantly affect the propensity of clutch to judder. The ability to accurately predict the judder phenomenon relies significantly on the determination of operational frictional characteristics of the clutch lining material. This is dependent upon contact pressure, temperature and interfacial slip speed. The current study investigates the ability to predict clutch judder vibration with the degree of complexity of the torsional dynamics model. For this purpose, the results from a four and nine degrees of freedom dynamics models are compared and discussed.
Technical Paper

Experimental Study on Knock Mechanism with Multiple Spark Plugs and Multiple Pressure Sensors

2020-09-15
2020-01-2055
Engine knock is an abnormal phenomenon, which places barriers for modern Spark-Ignition (SI) engines to achieve higher thermal efficiency and better performance. In order to trigger more controllable knock events for study while keeping the knock intensity at restricted range, various spark strategies (e.g. spark timing, spark number, spark location) are applied to investigate on their influences on knock combustion characteristics and pressure oscillations. The experiment is implemented on a modified single cylinder Compression-Ignition (CI) engine operated at SI mode with port fuel injection (PFI). A specialized liner with 4 side spark plugs and 4 pressure sensors is used to generate various flame propagation processes, which leads to different auto-ignition onsets and knock development. Based on multiple channels of pressure signals, a band-pass filter is applied to obtain the pressure oscillations with respect to different spark strategies.
Technical Paper

Combustion Visualization and Experimental Study on Multi-Point Micro-Flame Ignited (MFI) Hybrid Lean-Burn Combustion in 4-Stroke Gasoline Engines

2020-09-15
2020-01-2070
Lean-burn combustion is an effective method for increasing the thermal efficiency of gasoline engines fueled with stoichiometric fuel-air mixture, but leads to an unacceptable level of high cyclic variability before reaching ultra-low nitrogen oxide (NOx) emissions emitted from conventional gasoline engines. Multi-point micro-flame ignited (MFI) hybrid combustion was proposed to overcome this problem, and can be can be grouped into double-peak type, ramp type and trapezoid type with very low frequency of appearance. This research investigates the micro-flame ignition stages of double-peak type and ramp type MFI combustion captured by high speed photography. The results show that large flame is formed by the fast propagation of multi-point flame occurring in the central zone of the cylinder in the double-peak type. However, the multiple flame sites occur around the cylinder, and then gradually propagate and form a large flame accelerated by the independent small flame in the ramp type.
Technical Paper

Study on Hydrodynamic Characteristics of Fuel Droplet Impact on Oil Film

2020-04-14
2020-01-1429
In order to understand the spray impinging the lubricant oil on the piston or cylinder wall in GDI engine, the Laser Induced Fluorescence (LIF) method was used to observe the phenomenon of the fuel droplets impact oil film and distinguish the fuel and oil during the impingement. The experimental results show that the hydrodynamic characteristics of impingement affected by the oil viscosity, droplets’ Weber number, oil film thickness. Crown formed after impingement. The morphology after impingement was categorized into: rings, stable crown, splash and prompt splash. Low oil film dynamic viscosity, high Weber number or thin oil film can facilitate splash. Splash droplets consist of fuel and oil, and the oil is the main component of splash droplets and crown. The empirical formula of critical We number (We) is fitted. High dimensionless oil film thickness or low oil film dynamic viscosity can increase the proportion of fuel in the crown.
Journal Article

An Experimental Investigation into DEF Dosing Strategies for Heavy Duty Vehicle Applications

2015-04-14
2015-01-1028
In recent years urea selective catalytic reduction (SCR) has become the principal method of NOx abatement within heavy duty (HD) diesel exhaust systems; however, with upcoming applications demanding NOx reduction efficiencies of above 96 % on engines producing upwards of 10 g·kWh−1 NOx, future diesel exhaust fluid (DEF) dosing systems will be required to operate stably at significantly increased dosing rates. Developing a dosing system capable of meeting the increased performance requirements demands an improved understanding of how DEF sprays interact with changing exhaust flows. This study has investigated four production systems representing a diverse range of dosing strategies in order to determine how performance is influenced by spray structure and identify promising strategies for further development. The construction of an optically accessible hot-air flow rig has enabled visualisation of DEF injection into flows representative of HD diesel exhaust conditions.
Journal Article

Disturbance Estimation Based Modeling Technique for Control and Prediction in Controllable Mechanical Turbo-Compounding System

2016-04-05
2016-01-0023
Modeling techniques matter a lot in many fields of engine engineering. Models are requested not only for control design but also for dynamic prediction. However, problems might be encountered during modeling process either because of the system complexity or the unaffordable modeling cost. As a result, a new modeling technique based on disturbance estimation is proposed in this paper. By employing the proposed modeling technique, models are set up in real time with the online information from input and output. The uncertainties of system dynamics are handled as internal disturbance of the system, while the perturbation from outside are taken as the external disturbance, and the combination of the two can be estimated online by a kind of active observer called extended state observer (ESO).
Journal Article

An Objective Measure for Automotive Surface Contamination

2018-04-03
2018-01-0727
Surface contamination, or soiling, of the exterior of road vehicles can be unsightly, can reduce visibility and customer satisfaction, and, with the increasing application of surface-mounted sensors, can degrade the performance of advanced driver-assistance systems. Experimental methods of evaluating surface contamination are increasingly used in the product development process, but the results are generally subjective. The use of computational methods for predicting contamination makes objective measures possible, but comparable data from experiment is an important validation requirement. This article describes the development of an objective measure of surface contamination arising during experiments. A series of controlled experiments using ultraviolet (UV) dye-doped water are conducted to develop a robust methodology. This process is then applied to a simplified contamination test.
Journal Article

Modelling the Effect of Spray Breakup, Coalescence, and Evaporation on Vehicle Surface Contamination Dynamics

2018-04-03
2018-01-0705
Vehicle surface contamination is an important design consideration as it affects drivers’ vision and the performance of onboard camera and sensor systems. Previous work has shown that eddy-resolving methods are able to accurately capture the flow field and particle transport, leading to good agreement for vehicle soiling with experiments. What is less clear is whether the secondary breakup, coalescence, and evaporation of liquid particles play an important role in spray dynamics. The work reported here attempts to answer this and also give an idea of the computational cost associated with these extra physics models. A quarter-scale generic Sports Utility Vehicle (SUV) model is used as a test case in which the continuous phase is solved using the Spalart-Allmaras Improved Delayed Detached Eddy Simulation (IDDES) model. The dispersed phase is computed concurrently with the continuous phase using the Lagrangian approach.
Journal Article

A Fully Coupled, 6 Degree-of-Freedom, Aerodynamic and Vehicle Handling Crosswind Simulation using the DrivAer Model

2016-04-05
2016-01-1601
In a real-world environment, a vehicle on the road is subjected to a range of flow yaw angles, the most severe of which can impact handling and stability. A fully coupled, six degrees-of-freedom CFD and vehicle handling simulation has modelled the complete closed loop system. Varying flow yaw angles are introduced via time dependent boundary conditions and aerodynamic loads predicted, whilst a handling model running simultaneously calculates the resulting vehicle response. Updates to the vehicle position and orientation within the CFD simulation are achieved using the overset grid method. Using this approach, a crosswind simulation that follows the parameters of ISO 12021:2010 (Sensitivity to lateral wind - Open-loop test method using wind generator input), was performed using the fastback variant of the DrivAer model. Fully coupled aerodynamic and vehicle response was compared to that obtained using the simplified quasi-steady and unsteady, one way coupled method.
X