Refine Your Search

Topic

Search Results

Viewing 1 to 19 of 19
Journal Article

Visualization of Oxidation of Soot Nanoparticles Trapped on a Diesel Particulate Membrane Filter

2011-04-12
2011-01-0602
Through microscopic visualization experiments, a process generally known as depth filtration was shown to be caused by surface pores. Moreover, the existence of a soot cake layer was an important advantage for filtration performance because it could trap most of the particulates. We proposed an ideal diesel particulate filter (DPF), in which a silicon carbide (SiC) nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) instead of a soot cake was sintered on the DPF wall surface; this improved the filtration performance at the beginning of the trapping process and reduced energy consumption during the regeneration process. The proposed filter was called a diesel particulate membrane filter (DPMF). A diesel fuel lamp was used in the trapping process to verify the trapping and oxidation mechanisms of ultrafine particulate matter. Thus, the filtration performance of the membrane filters was shown to be better than that of conventional DPFs.
Technical Paper

Real-time Analysis of Benzene in Exhaust Gas from Driving Automobiles Using Jet-REMPI Method

2009-11-02
2009-01-2740
Real-time analysis of benzene in automobile exhaust gas was performed using the Jet-REMPI (supersonic jet / resonance enhanced multi-photon ionization) method. Real-time benzene concentration of two diesel trucks and one gasoline vehicle driving in Japanese driving modes were observed under ppm level at 1 s intervals. As a result, it became obvious that there were many differences in their emission tendencies, because of their car types, driving conditions, and catalyst conditions. In two diesel vehicle, benzene emission tendencies were opposite. And, in a gasoline vehicle, emission pattern were different between hot and cold conditions due to the catalyst conditions.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Investigation of Effects of Ignition Improvers on Ignition Delay Time of Ethanol Combustion with Rapid Compression and Expansion Machine

2012-04-16
2012-01-0854
This work investigates the effects of ignition improvers on the ignition and combustion characteristics of hydrous ethanol with 5% by weight water and 1% by weight Lauric acid (Eh95) under simulated diesel engine conditions using the rapid compression and expansion machine (RCEM). Results indicate that hydrous ethanol with commercial additive (ED95) and hydrous ethanol with 5% by weight glycerol ethoxylate in hydrous ethanol exhibit a near identical rate-of-pressure-rise and heat release rate. Ignition delay of hydrous ethanol with 5% by weight glycerol ethoxylate is shorter, but hydrous ethanol with 1% by weight glycerol ethoxylate has longer ignition delay time and different combustion characteristics compared with hydrous ethanol with commercial additive (ED95). Hydrous ethanol with 1% by weight glycerol ethoxylate and hydrous ethanol with 5% by weight glycerol ethoxylate are considered suitable fuels for high compression-ratio diesel engines.
Technical Paper

Comparison Study on Fuel Properties of Biodiesel from Jatropha, Palm and Petroleum Based Diesel Fuel

2014-03-24
2014-01-2017
The increase of air pollution and global warming is a threat for human life. Besides, the price of petroleum is increasing rapidly and the resources are diminishing. This obliged scientists and engineers to look for alternative sources of energy, which are cleaner and more sustainable. Biodiesel, defined as mono-alkyls of esters from vegetable oils and animals fat, is a cleaner renewable fuel and has been considered as the best alternative for petroleum based diesel fuel hence it can be used in any compression ignition engines without any significant modification. The main advantages of using biodiesel are its renewability and better quality of exhaust gas emissions due to their higher content of oxygen. The produce less soot and hence the feed stuck is plant it will regenerate the CO2 by the photosynthesis which ensures the renewability and reduces global warming.
Technical Paper

H∞ Control Design of Experimental State-Space Modeling for Vehicle Vibration Suppression

1997-05-20
971949
State-space solutions of H∞ controller have been well developed. Hence to a real structure control design, the first step is to get a state space model of the structure. There are analytical and experimental dynamic modeling methods. As we know, it is hard to obtain an accurate model for a flexible and complex structure by FEM(Finite Element Method). Then the experimental modeling methods are used. In this paper, we use frequency domain modal analysis technique based on system FRF(Frequency Response Function) data and ERA(Eigensystem Realization Algorithm) time domain method based on system impulse response data to establish state-space model in order to design H∞ control law for the purpose of vibration suppression. The robust control implementation is exerted on a testbed (truck cab model device) with three degrees of freedom. The validity of experimental state-space modeling is testified and the obvious vibration control performances are achieved.
Technical Paper

Autocruise Control of a Heavy-Duty Truck with Robust Performance

1994-11-01
942329
Robust performance control of an autocruise system for a heavy-duty truck is described. The controller design is carried out employing a loopshaping method, considering dynamics variation caused by the gear shift, the load changes, the vehicle speed and also the vibrational characteristics of the propulsion system as the plant uncertainty. Thereby a robust-stable controller is obtained without sacrificing the response to disturbances. Finally, nonlinear simulations and real vehicle experiments prove that the steady-state performance and its robustness excel the conventional PID's.
Technical Paper

A Design Guide for Wet Multiple Plate Clutches on Forklift Truck Transmissions Considering Strength Balance between Friction Material and Mating Plate

2013-04-08
2013-01-0231
Wet multiple plate clutches consist of friction plates, on which a friction material is bonded, and mating plates that are plain metal plates. Since the frequency and the range of load in the field of forklift trucks vary widely and are more severe than those for passenger cars, the wet multiple plate clutches on forklift trucks are often damaged. Damaged clutches that were returned from the field typically had 3 types of symptoms: 1.Only the friction material was damaged, 2.Only the mating plates were deformed, 3.Both symptoms were observed. It was clear that the cause of these symptoms depended on the difference of the operating application and the strength criteria of each part. This showed that a design guide for wet multiple plate clutches considering the strength balance between the two parts according to the work application was required. The relevant flow chart of this design process was proposed.
Technical Paper

Pyrene-LIF Thermometry of the Early Soot Formation Region in a Diesel Spray Flame

2005-09-11
2005-24-006
In order to investigate early soot formation process in diesel combustion, spectral analysis and optical thermometry of early soot formation region in a transient spray flame under diesel-like conditions (Pg2.8 MPa, Tg620-820K) was attempted via laser-induced fluorescence (LIF) from pyrene (C16H10) doped in the fuel. Pyrene is known to exhibit a temperature\-dependent variation of LIF spectrum; the ratio of S2/S1 fluorescence yields, from the lowest excited singlet state S1 and the second excited singlet state S2, depends on temperature. In the present study, pyrene was doped (1%wt) in a model diesel fuel (0-solvent) and the variation of LIF spectra from the pyrene in the spray flame in a rapid compression machine were examined at different ambient temperatures, ambient oxygen concentrations, measurement positions and timings after start of fuel injection.
Technical Paper

A Study on Ignition Delay of Diesel Fuel Spray via Numerical Simulation

2000-06-19
2000-01-1892
To investigate the ignition process in a diesel spray, the ignition in a transient fuel spray is analyzed numerically by a discrete droplet spray model (DDM) coupled with the Shell kinetics model at various operating conditions. Predicted results show that the fuel mixture injected at the start of injection, which travels along midway between the spray axis and the spray periphery, contributes heavily to the first ignition in a spray. The equivalence ratio and temperature of the first ignited mixture are kept nearly constant until the start of hot ignition. The temperature of the first ignited mixture is kept at a constant value of higher temperature than the thermodynamic equilibrium temperature of the mixture before the hot ignition starts. The equivalence ratio of the first ignited mixture is around 1.6 at initial gas temperatures between 750 K and 850 K.
Technical Paper

Multi-Step Water Splitting with Mn-Ferrite/Sodium Carbonate System

1999-08-02
1999-01-2670
Multi-step water splitting with Mn-ferrite(MnFe2O4)/sodium carbonate(Na2CO3) system accompanying endothermic reaction was investigated for converting solar energy into chemical energy. This water splitting is caused by the oxidation-reduction of manganese ion in the Mn-ferrite. Multi-water splitting with MnFe2O4/Na2CO3 system was consisted of three steps. The first step was hydrogen generation at 1073K. The second step was oxygen release at 1273K. The third step was Na2CO3 reproduction at 873K. The mechanism of multi-water splitting has been considered by XRD, chemical analysis of colorimetry and back titration. The temperature range 873 to 1273K is quite lower than those studied on the solar furnace reaction (O2 releasing step) in two-step water splitting (1500-2300K). This lower temperature range would permit further progress in converting the direct solar energy into chemical energy.
Technical Paper

Impact of Engine Oil Additives on Nanostructure and Oxidation Kinetics of Diesel and Synthetic Biodiesel Particulate Matters using Electron Microscopy

2019-12-19
2019-01-2351
Physicochemical characteristics of particulate matters which are influenced by engine oil additives from engine combustion of diesel and synthetic biodiesel: hydrotreated vegetable oil (HVO) were successfully investigated using electron microscopy, electron dispersive x-ray spectroscopy and thermogravimetric analysis. The agglomerate structure of diesel PM, HVO PM and diesel blending lubricant PM are similar in micro-scales. However, nanostructure of soot is a spherical shape composed of curve line crystallites while the metal oxide ash nanostructure is composed of parallel straight line hatch patterns. The oxidation kinetics of fuel blending lubricant PMs are higher than neat fuel PMs due to catalytic effect of incombustible metal additives from engine lubricating oil.
Technical Paper

Physical Characterization of Biodiesel Particle Emission by Electron Microscopy

2013-10-15
2013-32-9150
Nanostructures of diesel and biodiesel engine particulate matters (PMs) were investigated by using a Transmission Electron Microscopy (TEM). The average single particle sizes of biodiesel and diesel PMs are approximately 30-40 nm and 50-60 nm, respectively. Image processing process was used to estimate each carbon platelet length by using TEM image. The average carbon platelet length of biodiesel and diesel PMs are in the range of 0.1-7.0 nm. Moreover, carbon atoms per cubic volume of PMs are approximately 500-900. The result shows that engine load and fuel property are strongly impact on the size of single particle and carbon atom density of particle. This is one of interesting behaviors need to be investigated for better understanding. The results of this research would be used as basic information for design and develop removing process of PM emitted from engine combustion which using in diesel and biodiesel fuels.
Technical Paper

Experimental Investigation in Combustion Characteristics of Ethanol-gasoline Blends for Stratified Charge Engine

2011-11-08
2011-32-0551
The increasing of global energy demand and stringent pollution regulations have promoted research on alternative fuels. In Thailand, ethanol, can be produced from many sources of national agriculture products as renewable fuel, which was strongly promoted by government due to its many merits for use in transportation field. In this study, combustion characteristics of ethanol-gasoline blend (20%, 85%, and 100%) as well as pure gasoline (E0) were investigated by using a swirl-generated constant volume combustion chamber. Flame propagations of different fuel blends were observed by high speed Schlieren photography technique while pressure history data were recorded for detailed combustion analysis. Combustion behavior, combustion duration and rate of pressure rise of all tested fuels were investigated in various swirl intensities and equivalence ratios. In addition, effect of swirl intensities and ethanol concentration on lean misfire limit were also discussed.
Technical Paper

Low Temperature Starting Techniques for Ethanol Engine without Secondary Fuel Tank

2011-11-08
2011-32-0552
The present study aims to investigate the parameters affecting cold start characteristics of ethanol at low temperature, and suggest a solution to avoid cold starting problem without the installation of second fuel tank. The testing engine is a 125cc volume displacement, single-cylinder four strokes SI engine with fuel injection and ignition timing system controlled by ECU (electronic control unit). The cold starting performance tests were extensively conducted with different percentages of ethanol blends, surrounding temperatures, heating inside combustion chamber, heater injector, pre-cranking without fuel injection, and amount of fuel injection. From the experimental results, when using ethanol fuel in conventional engine, the problem of cold starting was observed at surrounding temperature lower than 20°C for ethanol. Increasing of injection duration can lower the possible cold start temperature of neat ethanol.
Technical Paper

Effect of Biofuel and Soot on Metal Wear Characteristic Using Electron Microscopy and 3D Image Processing

2017-11-05
2017-32-0095
The soot contamination in used engine oils of diesel engine vehicles was about 1% by weight. The soot and metal wear particle sizes might be in the range of 0-1 µm and 1-25 µm, respectively. The characteristics of soot affecting on metal wear was investigated. Soot particle contamination in diesel engine oil was simulated using carbon black. Micro-nanostructure of soot particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser diffraction spectroscopy (LDS). The metal wear behavior was studied by means of a Four-Ball tribology test with wear measured. Wear roughness in micro-scale was investigated by high resolution optical microscopy (OM) , 3D rendering optical technique and SEM image processing method. It was found that the ball wear scar diameter increased proportionally to the soot primary particle size. The effect of biodiesel contamination were also increasing in wear scar diameter.
Technical Paper

Impact of Biodiesel on Small CI Engine Combustion Behavior and Particle Emission Characteristic

2017-11-05
2017-32-0094
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
Technical Paper

The Effect of Exhaust Gas Recirculation on Performance and Emission of Ethanol Fumigated Diesel Engine

2017-11-05
2017-32-0101
Primary energy source such as fossil fuel keep decreasing due to various kind of usage. According to less amount of the fossil fuel, human seeks for an alternative fuel source such as alcohol. Alcohol like ethanol can be produced easily from strarchy plant. But using alcohol as blended fuel with diesel fuel doesn't work well because alcohol has low cetane number, lack of lubricity and very low miscibility with diesel fuel. To overcome this, fumigation system or port fuel injection of alcohol seems interesting. Although it requires more complicate system but it can compensate the miscibility issue and alcohol can be used in higher dose to give more energy. Diesel engine produces a lot of emission such as NOx and some other carbon content emission like HC, CO and soot due to they run in lean condition as their characteristic. Modern diesel engines are now coupled with exhaust gas recirculation system to help reduce in main emission like NOx.
Technical Paper

Characterization of Biodiesel Particle Emission in Trapping and Regeneration Processes on Cordierite Diesel Particulate Filter

2015-11-17
2015-32-0821
As well-known, the diesel engine has the highest thermal efficiency at the same load as compared with internal combustion engine but its disadvantage is particulate matter (PM) emitted to the atmosphere. The studies of this paper were divided into two parts. The first part studied the quantity of PM from the both diesel and biodiesel fuels at 80% load (2400 rpm) by the trapping process on diesel particulate filter (DPF) used in a partial flow dilution tunnel. The second part studied the regeneration process of PM under the flow rate of oxygen and nitrogen gas of 13.5 L/min with 10%, 15%, and 21% of oxygen gas. The result showed that amount of PM from biodiesel fuel was lower around two times than PM from diesel fuel. The duration in regeneration process of biodiesel's PM was shorter than diesel while increasing of oxygen percentage can reduce regeneration time.
X