Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Advanced Control System of Variable Compression Ratio (VCR) Engine with Dual Piston Mechanism

2009-04-20
2009-01-1063
A dual piston Variable Compression Ratio (VCR) engine has been newly developed. This compact VCR system uses the inertia force and hydraulic pressure accompanying the reciprocating motion of the piston to raise and lower the outer piston and switches the compression ratio in two stages. For the torque characteristic enhancement and the knocking prevention when the compression ratio is being switched, it is necessary to carry out engine controls based on accurate compression ratio judgment. In order to accurately judge compression ratio switching timing, a control system employing the Hidden Markov Model (HMM) was used to analyze vibration generated during the compression ratio switching. Also, in order to realize smooth torque characteristics, an ignition timing control system that separately controls each cylinder and simultaneously performs knocking control was constructed.
Journal Article

Advanced Design of Variable Compression Ratio Engine with Dual Piston Mechanism

2009-04-20
2009-01-1046
A Dual Piston Variable Compression Ratio (VCR) engine has been newly developed. In order to ensure the strength of the Dual Piston, the design guidelines were established. There are two advantages of this design. One is the compactness and the compatibility with a mass production engine block. Another is less power consumption required during compression ratio switching. However, the durability is a challenge for this design because of the impact load during the switching driven by the inertial force of a reciprocating piston. In order to achieve a durable configuration, it was necessary to consider the dynamics of the stress after impact, from analysis of the impacting process during the switching. The analysis of stress and deformation mode was improved in accuracy by using Computer Aided Engineering (CAE) in the designing process.
Journal Article

Simultaneous Measurements of Aromatic Hydrocarbons in Exhaust using a Laser Ionization Method

2009-11-02
2009-01-2742
A simultaneous multi-composition analyzing (SMCA) resonance enhanced multi-photon ionization (REMPI) system was used to investigate gasoline engine exhaust. Observed peaks for exhaust were smaller mass numbers than those from diesel exhaust. However, large species up to three ring aromatics were observed suggesting that soot precursor forms even in the gasoline engine. At low catalyst temperature condition, the reduction efficiencies of a three-way catalyst were higher for higher mass numbers. This result indicates that the larger species accumulate in the catalyst or elsewhere due to their lower vapor pressures. To evaluate the emission of low volatility species, the accumulation should be taken into account. In the hot mode, reduction efficiencies for aromatic species of three-way catalyst were almost 99.5% however, they fall to 70% in the cold start condition.
Journal Article

Very Lean and Diluted SI Combustion Using a Novel Ignition System with Repetitive Pulse Discharges

2009-11-03
2009-32-0119
A newly developed small-sized IES (inductive energy storage) circuit with semiconductor switch at turn-off action is successfully applied to an ignition system of a small gasoline internal combustion engine. This IES circuit can generate repetitive nanosecond pulse discharges. An ignition system using repetitive nanosecond pulse discharges is investigated as an alternative to a conventional spark ignition system. The present study focuses on the extension of the operational limits for lean and diluted combustion using the repetitive nanosecond pulse discharges. First, in order to investigate the flame kernel formation process when the repetitive nanosecond pulse discharges are used, the initial flame kernel is observed using Schlieren photography with a high speed camera. As a result, the flame kernel generated by repetitive pulse discharges is larger than by a conventional ignition system.
Journal Article

Particulate Matter Trapping and Oxidation on a Catalyst Membrane

2010-04-12
2010-01-0808
Particulate matter (PM) trapping and oxidation in regeneration on the surface of a diesel particulate catalyst-membrane filter (DPMFs) were investigated in detail using an all-in-focus optical microscope. The DPMF consists of two-layer sintered filters, where a SiC-nanoparticle membrane (made from a mixture of 80 nm and 500 nm powders) covers the surface of a conventional SiC filter. Using a visualization experiment, it was shown that PMs were trapped homogeneously along fine surface pores of the membrane's top surface, whereas in the regeneration process, the particulates in contact with the membrane may have been oxidized with some catalytic effect of the SiC nanoparticles. A soot cake was reacted continuously on the nanoparticles since pushed by a gas flow. The oxidation temperature of particulate trapped on the SiC-nanoparticle membrane was about 75 degrees lower than that on the conventional diesel particulate filters (DPF) without a catalyst.
Journal Article

Development of New V6 3.5L Gasoline Engine for ACURA RLX

2013-04-08
2013-01-1728
Honda has developed a new next-generation 3.5 L V6 gasoline engine using our latest Earth Dreams Technology. The overall design objective for the engine was to reduce CO₂ emissions and provide driving exhilaration. The Earth Dreams Technology concept is to increase fuel economy while reducing emissions. To achieve this and provide an exhilarating driving experience, 3-stage Variable Valve Timing and Lift Electronic Control (VTEC) was combined with the Variable Cylinder Management (VCM) system. This valve train technology in conjunction with Direct Injection (DI), resulted in dramatic improvements in output (a 3.3% increase) and combined mode fuel economy (20% reduction). Helping to achieve Midsize Luxury Sedan level NV, a new mount system was developed to reduce engine vibrations during three-cylinder-mode operation. In this paper, we will explain the 3-stage VTEC with VCM + DI system, friction reducing technology, and the structure and benefit of the new engine mount system.
Journal Article

Extension of Lean Burn Range by Intake Valve Offset

2013-10-15
2013-32-9032
Using a 109.2 cm3, four-stroke, single-cylinder, two-valve gasoline engine, improvement of fuel economy by extension of lean burn range has been attempted with invented way to intensify tumble flow from a simple mechanical arrangement. With a part of the intake valve was jutted out beyond the perimeter of the cylinder bore, the masking effects from the valve recess on top of the cylinder sleeve created a strong tumble flow, which enabled lean burn at an air fuel ratio leaner than the conventional design by two points. The motorcycle equipped with this engine attained better fuel economy by 5.7% to the base model when measured in Indian Driving Cycle (IDC). The outward-laid intake valve also increased the clearance from the exhaust valve, which enabled use of a large-diameter intake valve to minimize the reduction of maximum power.
Journal Article

A Study of Controlled Auto-Ignition in Small Natural Gas Engines

2013-10-15
2013-32-9098
Research has been conducted on Controlled Auto-Ignition (CAI) engine with natural gas. CAI engine has the potential to be highly efficient and to produce low emissions. CAI engine is potentially applicable to automobile engine. However due to narrow operating range, CAI engine for automobile engine which require various speed and load in real world operation is still remaining at research level. In comparison some natural gas engines for electricity generation only require continuous operation at constant load. There is possibility of efficiency enhancement by CAI combustion which is running same speed at constant load. Since natural gas is primary consisting of methane (CH4), high auto-ignition temperature is required to occur stable auto-ignition. Usually additional intake heat required to keep stable auto-ignition. To keep high compression temperature, single cylinder natural gas engine with high compression ratio (CR=26) was constructed.
Journal Article

Evaluation of the Performance of a Boosted HCCI Gasoline Engine with Blowdown Supercharge System

2013-10-15
2013-32-9172
HCCI combustion can realize low NOx and particulate emissions and high thermal efficiency. Therefore, HCCI combustion has a possibility of many kinds of applications, such as an automotive powertrain, general-purpose engine, motorcycle engine and electric generator. However, the operational range using HCCI combustion in terms of speed and load is restricted because the onset of ignition and the heat release rate cannot be controlled directly. For the extension of the operational range using either an external supercharger or a turbocharger is promising. The objective of this research is to investigate the effect of the intake pressure on the HCCI high load limit and HCCI combustion characteristics with blowdown supercharging (BDSC) system. The intake pressure (Pin) and temperature (Tin) were varied as experimental parameters. The intake pressure was swept from 100 kPa (naturally aspirated) to 200 kPa using an external mechanical supercharger.
Journal Article

Durability Design Method of New Stopper Bush Using New Theory (Friction and Spring) for Electric Power Steering

2014-04-01
2014-01-0046
In the automobile industries, weight reduction has been investigated to improve fuel efficiency together with reduction of CO2 emission. In such circumstance, it becomes necessity to make an electric power steering (EPS) more compact and lightweight. In this study, we aimed to have a smaller and lighter EPS gear size by focusing on an impact load caused at steering end. In order to increase the shock absorption energy without increase of stopper bush size, we propose new theory of impact energy absorption by not only spring function but also friction, and a new stopper bush was designed on the basis of the theory. The profile of the new stopper bush is cylinder form with wedge-shaped grooves, and when the new stopper bush is compressed by the end of rack and the gear housing at steering end, it enables to expand the external diameter and produce friction. In this study, we considered the durability in the proposed profile.
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley Part 1: Measurement Using Micro Data Logger System and Thin-Film Sensor

2014-04-01
2014-01-1732
In order to reduce friction and predict wear of the sliding part, it is important to determine the oil film thickness of particular area. A sensor or similar device must be attached to the sliding surface to detect the oil film thickness. However, a sensor could not be attached, due to the lack of space on contact surface, and moreover there was no method to secure the sensor on contact surface at that time. A several-micrometer-thin-film sensor was installed on a sliding surface to attempt measurement, but since the sensor was attached on a contact surface, wear occurred immediately and data was unable to be obtained. To accomplish above issue, we developed a protective layer with excellent wear-resistance that successfully extended the measurement time by protecting the thin-film sensor.
Journal Article

Measurement of Oil Film Pressure on Running Continuously Variable Transmission Pulley - Part 2: Oil Film Thickness Calculation Based on EHL Theory

2014-04-01
2014-01-1731
In order to maintain the performance of push belt Continuously Variable Transmissions (CVT) over a long period of time, it is important to acquire a fundamental understanding of lubrication performance between a pulley and a metal V-belt. This work examined oil film thickness using the contact pressure on a sliding surface of pulley sheave during driving, which was obtained with an uniquely developed measurement technique. The contact between a belt element and a pulley sheave was treated as a group of small elliptical contact zones. The pressure-viscosity characteristics of lubricant were assigned to Reynolds equation with Roelands experimental formula. Also, in order to increase convergence of the calculation, a multigrid method was used. Calculation results indicate that the oil film thickness at a peak contact pressure measured was approximately 0.3-0.4 μm.
Journal Article

New Theoretical Approach for Weight Reduction on Cylinder Head

2015-04-14
2015-01-0495
Designing a lightweight and durable engine is universally important from the standpoints of fuel economy, vehicle dynamics and cost. However, it is challenging to theoretically find an optimal solution which meets both requirements in products such as the cylinder head, to which various thermal loads and mechanical loads are simultaneously applied. In our research, we focused on “non-parametric optimization” and attempted to establish a new design approach derived from the weight reduction of a cylinder head. Our optimization process consists of topology optimization and shape optimization. In the topology optimization process, we explored an optimal structure with the theoretically-highest stiffness in the given design space. This is to provide an efficient structure for pursuing both lightweight and durable characteristics in the subsequent shape optimization process.
Journal Article

Development of γ′-Fe4N Phase Control Technology and Low-Carbon Alloy Steel for High-Strength Nitrided Gear

2015-04-14
2015-01-0519
A new nitriding technology and material technology have been developed to increase the strength of microalloyed gears. The developed nitriding technology makes it possible to freely select the phase composition of the nitride compound layer by controlling the treatment atmosphere. The treatment environment is controlled to exclude sources of supply of [C], and H2 is applied as the carrier gas. This has made it possible to control the forward reaction that decomposes NH3, helping to enable the stable precipitation of γ′-phase, which offers excellent peeling resistance. A material optimized for the new nitriding technology was also developed. The new material is a low-carbon alloy steel that makes it possible to minimize the difference in hardness between the compound layer and the substrate directly below it, and is resistant to decline in internal hardness due to aging precipitation in the temperature range used in the nitriding treatment.
Journal Article

Effect of Surface Heat Treatment on Corrosion-Related Failure of the Suspension Spring

2015-04-14
2015-01-0518
In this research, a new wire material made using surface-reforming heat treatment was developed in order to enhance the corrosion fatigue resistance of suspension springs. The aim of surface reforming is to improve hydrogen embrittlement characteristics through grain refinement and to improve crack propagation resistance by partial softening of hardness. The grain refinement method used an α'→γ reversed transformation by rapid short-term heating in repeated induction heating and quenching (R-IHQ) to refine the crystal grain size of SAE 9254 steel spring wire to 4 μm or less. In order to simultaneously improve the fatigue crack propagation characteristics, the possibility of reducing the hardness immediately below the spring surface layer was also examined. By applying contour hardening in the second IHQ cycle, a heat affected zone (HAZ) is obtained immediately below the surface.
Journal Article

Study of High-Compression-Ratio Engine Combined with an Ethanol-Gasoline Fuel Separation System

2014-10-13
2014-01-2614
Bio-ethanol is used in many areas of the world as ethanol blended gasoline at low concentrations such as “E10 gasoline”. In this study, a method was examined to effectively use this small amount of ethanol within ethanol blended gasoline to improve thermal efficiency and high-load performance in a high-compression-ratio engine. Ethanol blended gasoline was separated into high-concentration ethanol fuel and gasoline using a fuel separation system employing a membrane. High-ethanol-concentration fuel was selectively used at high-load conditions to suppress knocking. In this system, a method to decrease ethanol consumption is necessary to cover the wide range of engine operation. Lower ethanol consumption could be achieved by Miller-cycle operation because decrease of the effective compression ratio suppresses knocking. However, high-load operation was limited due to the decrease in intake air volume with Miller-cycle operation.
Journal Article

Application of Engine Load Estimation Method Using Crank Angular Velocity Variation to Spark Advance Control

2014-11-11
2014-32-0065
The technology to estimate engine load using the amplitude of crankshaft angular velocity variation during a cycle, which is referred to as “Δω (delta omega)”, in a four-stroke single-cylinder gasoline engine has been established in our former studies. This study was aimed to apply this technology to the spark advance control system for small motorcycles. The cyclic variation of the Δω signal, which affects engine load detection accuracy, was a crucial issue when developing the system. To solve this issue, filtering functions that can cope with various running conditions were incorporated into the computation process that estimates engine loads from Δω signals. In addition, the system made it possible to classify engine load into two levels without a throttle sensor currently used. We have thus successfully developed the new spark advance system that is controlled in accordance with the engine speed and load.
Technical Paper

Investigation on Effect of Offset Orifice Nozzle on Diesel Combustion Characteristics

2020-09-15
2020-01-2038
Compression ignition engines provide superior thermal efficiency over other internal combustion engines. Unfortunately the combustion process is diffusive combustion, meaning a lot of fuel is impinged the on the piston and cylinder wall. This creates cooling loss coupled with smoke, CO and THC. Minimization of the nozzle orifice diameter is a simple method widely used to shorten spray penetration. However, decreasing the nozzle orifice diameter also decreases fuel flow rate resulting in a prolonged injection and combustion process and reducing thermal efficiency. An offset orifice nozzle causes less fuel impingement by shorter fuel spray penetration without significant reduction of fuel flow rate. The offset orifice nozzle was made by shifting its alignment from the center of the sac to the edge of the sac following the swirl direction. A counterbore design was applied to maintain constant orifice length.
Technical Paper

Stereoscopic Micro-PIV Measurement of Near-Wall Velocity Distribution in Strong Tumble Flow under Motored SI Engine Condition

2020-09-15
2020-01-2019
In a state-of-the-art lean-burn spark ignition engine, a strong in-cylinder flow field with enhanced turbulence intensity is formed, and understanding the wall heat transfer mechanism of such a complex flow is required. The flow velocity and temperature profiles inside the wall boundary layer are strongly related to the heat transfer mechanism. In this study, two-dimensional three-component (2D3C) velocity distribution near the piston top surface was measured during the compression stroke in a strong tumble flow using a rapid compression and expansion machine (RCEM) and a stereoscopic micro-PIV system. The bore, stroke, compression ratio, and compression time were 75 mm, 128 mm, 15, and 30 ms (equivalent to 1000 rpm), respectively.
Technical Paper

In-Cylinder Optical Measurement for Analyzing Control Factor of Ignition Phenomena under Diluted Condition

2020-09-15
2020-01-2048
To increase thermal efficiency of internal combustion engines, dilution combustion systems, such as lean burn and exhaust gas recirculation systems, have been developed. These systems require spark-ignition coils generating large discharge current and discharge energy to achieve stable ignition under diluted mixture conditions. Several studies have clarified that larger discharge current increases spark-channel stretch and decreases the possibility of spark channel blow-off and misfire. However, these investigations do not mention the effect of larger discharge current and energy on the initial combustion period. The purpose of this study was to investigate the relation among dilution ratio, initial-combustion period, and coil specifications to clarify the control factor of the dilution limit.
X