Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Journal Article

Prediction of Temperature Field Inside Lithium-Ion Battery Based on Similarity Theory

2014-04-01
2014-01-1841
To accurately and efficiently predict the temperature fields inside a lithium-ion battery is key technology for the enhancement of battery thermal management and the improvement of battery performances. The dimensional analysis method is applied to derive similarity criterions and the similarity coefficients of battery interior temperature fields, based on the governing partial differential equations describing the three dimensional transient temperature field. To verify the correctness of similarity criterions and the similarity coefficients, 3D finite element models of battery temperature field are established with a prototype and scale model, on the assumption that the battery cell has single-layer structure and multi-layers structure separately. The simulation results show that the similarity criterions and the similarity coefficients are correct.
Journal Article

Torque Vectoring Control for Distributed Drive Electric Vehicle Based on State Variable Feedback

2014-04-01
2014-01-0155
Torque Vectoring Control for distributed drive electric vehicle is studied. A handling improvement algorithm for normal cornering maneuvers is proposed based on state variable feedback control: Yaw rate feedback together with steer angle feedforward is employed to improve transient response and steady gain of the yaw rate, respectively. According to the feedback coefficient's influence on the transient response, an optimization function is proposed to obtain optimum feedback coefficients under different speeds. After maximum feedforward coefficients under different speeds are obtained from the constraint of the motor exterior characteristic, final feedforward coefficients are calculated according to an optimal steering characteristic. A torque distribution algorithm is presented to help the driver to speed up during the direct yaw moment control.
Technical Paper

Simulations of Key Design Parameters and Performance Optimization for a Free-piston Engine

2010-04-12
2010-01-1105
To develop a free-piston engine-alternator integrative power system for Hybrid Electric Vehicles, the key design parameters, such as reciprocating mass of the piston assembly, compression ratio, the ignition timing, the engine fuel consumption rate and power output, are studied based on the simulation. The results show that, the system simulation model of the free piston engine can predict the in-cylinder pressure vs. the piston's displacement being accurate enough as the test results from reported reference. The model can be employed to optimize the design parameters and to predict the fuel economy and power output. It provides the methods and bases for the free piston engine design and predicting the main performance parameters' values.
Technical Paper

Optimization of Control Strategy for Engine Start-stop in a Plug-in Series Hybrid Electric Vehicle

2010-10-25
2010-01-2214
Plug-in hybrid electric vehicles (PHEVs) provide significantly improvement in fuel economy over conventional vehicles as well as reductions in greenhouse gas and petroleum. Numerous recent reports regarding control strategy, power train configuration, driving pattern, all electric range (AER) and their effects on fuel consumption and electric energy consumption of PHEVs are reported. Meanwhile, the control strategy for engine start-stop and mileage between recharging events from the electricity grid also has an important influence on the petroleum displacement potential of PHEVs, but few reports are published. In this paper, a detailed simulation model is set up for a plug-in series hybrid electric vehicle (PSHEV) employing the AVL CRUISE. The model was employed to predict the AER of the baseline PSHEV using rule-based logical threshold switching control strategy.
Technical Paper

Power Matching and Control Strategy of Plug-in Series Hybrid Electric Car

2010-10-25
2010-01-2195
In this paper, based on the plug-in series hybrid electric vehicle development project, the vehicle technology solutions and the match of power system parameters were analyzed. The vehicle control strategies were identified and optimized according to plug-in hybrid vehicle features. The plug-in series hybrid, rule-based logic threshold switching control strategy, charge depleting (CD) mode and charge-sustaining (CS) mode are chosen according to the key factors, such as the environment, performance requirements, technical requirements and cost. And then the structure and model of vehicle control strategy were established to carry out vehicle energy management and power system control. The parameter selection, electric drive system matching, energy storage system design based on the requirement of vehicle performance, system architecture and control strategy are presented.
Technical Paper

Study on Fuel Economy Improvement by Low Pressure Water-Cooled EGR System on a Downsized Boosted Gasoline Engine

2016-04-05
2016-01-0678
This research was concerned with the use of Exhaust Gas Recirculation (EGR) improving the fuel economy over a wide operating range in a downsized boosted gasoline engine. The experiments were performed in a 1.3-Litre turbocharged PFI gasoline engine, equipped with a Low Pressure (LP) water-cooled EGR system. The operating conditions varied from 1500rpm to 4000rpm and BMEP from 2bar to 17bar. Meanwhile, the engine’s typical operating points in NEDC cycle were tested separately. The compression ratio was also changed from 9.5 to 10.5 to pursue a higher thermal efficiency. A pre-compressor throttle was used in the experiment working together with the EGR loop to keep enough EGR rate over a large area of the engine speed and load map. The results indicated that, combined with a higher compression ratio, the LP-EGR could help to reduce the BSFC by 9∼12% at high-load region and 3∼5% at low-load region.
Technical Paper

Research of Eliminating Method of Undesired Shifting for Vehicle with Dual Clutch Transmission

2013-04-08
2013-01-0485
The undesired shifting phenomenon(USP) occurs easily under the braking or climbing conditions etc., and its impact is the discomfort to the passengers or cause of vehicle's state contrary to the driver's intention, meanwhile, the wear of the clutch and synchronizer is increased, so their lifetime are greatly shortened. To the vehicle with dual clutch transmission (DCT), undesired shifting phenomenon will lead to frequent and unnecessary actuation of synchronizer for the use of pre-engagement synchronizer in the shifting control; therefore, its occurrence should be eliminated as far as possible. In this paper, the process of the undesired shifting of the vehicle with DCT is elaborated, then the generating cause of USP is described based on directed graph.
Technical Paper

Study on Lane Change Trajectory Planning Considering of Driver Characteristics

2018-08-07
2018-01-1627
Automatic lane change of intelligent vehicles is a complex process. Besides of safety, feelings of the driver and passengers during the lane change are also very important. In this paper, a lane change trajectory planner is designed to generate an ideal collision-free trajectory to satisfy the driver’s preference. Various lane changing modes, gentle lane change, general lane change, radical lane change and personalized lane change, are designed to meet the needs of different passengers on vehicles simultaneously. In this paper, the condition of the two-lane change is studied. One vehicle is in front of the ego vehicle at the same lane and one is at the rear of the ego vehicle at the target lane. A trajectory planning method is then established based on constant speed offset and sine curve, vehicle distances and speed difference, etc. The key factors which can reflect drivers’ lane change characteristics are then acquired.
Technical Paper

A Study on Combustion and Emission Characteristics of GDI Engine for HEV at Quick Start

2014-10-13
2014-01-2709
Gasoline Direct Injection (GDI) engines have attracted interest as automotive power-plants because of their potential advantages in down-sizing, fuel efficiency and in emissions reduction. However, GDI engines suffer from elevated unburned hydrocarbon (HC) emissions during start up process, which are sometimes worsened by misfires and partial burns. Moreover, as the engine is cranked to idle speed quickly in HEVs (Hybrid Electric Vehicle), the transients of quick starts are more dramatically than that in traditional vehicle, which challenge the optimization of combustion and emissions. In this study, test bench had been set up to investigate the GDI engine performances for ISG (Integrated Starter and Generator) HEVs during start up process. Based on the test system, cycle-controlled of the fuel injection mass, fuel injection timing and ignition timing can be obtained, as well as the cycle-resolved measurement of the HC concentrations and NO emissions.
Technical Paper

Analysis and Design of Dual-Motor Electro-Hydraulic Brake System

2014-09-28
2014-01-2532
In this paper, by analyzing multiple electro-hydraulic brake system schemes in detail, the idea of dual-motor electro-hydraulic brake system is proposed. As a new solution, the dual-motor electro-hydraulic brake system can actively simulate pedal feel, make the most of pedal power (from the driver), and reduce the maximum power output of each active power source remarkably, which is a distinctive innovation compared to most current electro-hydraulic brake systems. Following the proposed concept, a general research thought and method is conceived, and then a dual-motor electro-hydraulic brake system is designed. Finally, the simulation model is set up in AMESim software and its feasibility is simulated and verified.
Technical Paper

Effect of Two-Stage Valve Lift for Fuel Economy and Performance on a PFI Gasoline Engine

2014-10-13
2014-01-2874
Reducing the pumping loss, and thus, the fuel consumption of gasoline engine at part load, a two-stage intake valve lift system was implanted into a PFI engine. A corresponding engine model was set up with GT-power as well, which can simulate the effect of two-stage intake valve lift and different EGR rates on fuel economy performance and on combustion condition of a gasoline engine. Based on simulation results, the valve lift control strategy and EGR control strategy was studied in this paper. Results showed that at low engine speed, when SMALL LIFT was used, the tumble flow and the combustion process in cylinder was improved and burn time duration became shorter, resulting in higher indicated efficiency and lower fuel consumption than by LARGE LIFT. With the introduction of the exhaust gas recirculation (EGR), lower fuel consumption was acquired.
Technical Paper

Development of a Compact Compound Power-Split Hybrid Transmission Based on Altered Ravigneaux Gear Set

2014-04-01
2014-01-1793
Several types of power-split hybrid transmissions are outlined and the strengths and weaknesses of typical compound power-split prototype designs are summarized in this paper. Based on an modified Ravigneaux gear set, a novel compound power-split hybrid transmission with compact mechanical structure is presented, its dynamic and kinematic characteristics in equations and operating modes are described, and then equivalent lever diagrams are used to investigate the proposed compound power-split device. Control strategies in different operating modes are discussed with the simplified combined lever diagram, and a global optimization method is implemented to find the optimum operation point for the hybrid powertrain. To evaluate the fuel economy of a hybrid car equipped with this hybrid transmission, a forward powertrain simulation model is developed and real vehicle performance tests are conducted in the chassis dynamometer.
Technical Paper

Closed Loop Control of SI/HCCI Combustion Mode Switch Based on Ion Current Feedback

2014-10-13
2014-01-2704
Gasoline direct injection (GDI) technology is admitted to be one of the most effective measures to improve the fuel economy for the spark ignition (SI) engines. Homogeneous Charge Compression Ignition (HCCI) combustion has advantages of low fuel consumption and ultra low NOx emissions. But the difficulty in the autoignition control and the narrow operation region inhibit the practical application of this technology. A hybrid combustion mode which combines SI mode and HCCI mode in separated working regions was regarded as a promising technology for HCCI engines. In addition, monitoring and providing feedback to the in-cylinder combustion characteristics is generally considered to be an effective method to improve and to optimize the combustion process. A lot of combustion information is included in the ion current generated by the in-cylinder combustion, and hence the ion current detection technique is considered to be a potential combustion feedback method.
Technical Paper

STATE OF HEALTH DETERMINATION OF LITHIUM ION CELLS IN AND OUTSIDE THE VEHICLE

2011-05-17
2011-39-7235
There is an enormous effort to implement safety functionality into battery systems to prevent any accidents with the poisonous and inflammable ingredients of the electrolytes and electrode materials. But not only the safety regulation for lithium ion batteries will be different in comparison to the home electronics application, also the operating strategy must be different to guaranty the required lifetime in the automotive industry up to 10-12 years. This paperwork will show an approach to get offline (on test benches) and/or online (installed inside the car) information regarding the current healthy and state inside the cell. As an approach modeling of physical effects by the help of electro impedance spectroscopy (EIS) will be applied.
X