Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Stratification on Ion Distribution in HCCI Combustion Using 3D-CFD with Detailed Chemistry

2013-10-14
2013-01-2512
Ion current sensing, which usually employs a spark plug as its sensor to obtain feedback signal from different types of combustion in SI engines, may be applied to HCCI combustion sensing instead of a prohibitively expensive piezoelectric pressure transducer. However, studies showed that the ion current detected by a spark plug sensor is a localized signal within the vicinity of the sensor's electrode gap, being affected by conditions around it. To find out better and feasible ion probe positions, a 3D-CFD model with a detailed surrogate mechanism containing 1423 species and 6106 reactions was employed to study the effect of stratification on ion distribution in HCCI combustion. The simulation results indicate that the monitor probe 1, 8 and 9 are more stable and reliable than the others. IONmax and dIONmax are more accurate to estimate CA50 and dQmax respectively.
Technical Paper

Effect of Nozzle Geometry on Macroscopic Behavior of Diesel Spray in the Near-Nozzle Field

2013-04-08
2013-01-1587
In this study, the orifice inlet rounding radii of four diesel nozzles with different hydro erosive grinding time were measured based on the x-ray CT scan technology provided by Shanghai Synchrotron Radiation Facility (SSRF), and a wide parametrical study of the spray macroscopic behavior in the first 18 mm from the nozzle tip have been carried out with high speed camera. And then the influence of orifice inlet rounding radius on the spray behavior in the near-nozzle field was thoroughly investigated. The investigation results show that: the mean values of orifice inlet rounding radii of different nozzles are measured to be on the order of 21.5-56.8 μm. Although the spray tip penetrations of different nozzles tend to increase with the hydro erosive grinding time through statistical analyzing method, the variations of penetration from nozzles are less than 15% according to different hydro erosive grinding timing.
Technical Paper

Cycle Resolved Combustion and Pre-Ignition Diagnostic Employing Ion Current in a PFI Boosted SI Engine

2015-04-14
2015-01-0881
An ion current sensor is employed in a 4 cylinder production SI engine for combustion diagnosis during combustion process, knock, and low speed pre-ignition (LSPI) detection. The results show that the ion current peak value and ion current peak phase have strong correlation with the cylinder pressure and pressure peak phase respectively. The COV of ion current integral value is greater than the COV of IMEP at the same operating condition. Results show that the ion current signal is sensitive to different lambdas. Using ion current signal, the knock in any given cylinder can be detected. Importantly, the ion sensor successfully detected the low speed pre-ignition (LSPI) about more than 20 °CA before spark ignition.
X