Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

In-Vehicle Driving Posture Reconstruction from 3D Scanning Data Using a 3D Digital Human Modeling Tool

2016-04-05
2016-01-1357
Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
Technical Paper

An Interactive Car-Following Model (ICFM) for the Harmony-With-Traffic Evaluation of Autonomous Vehicles

2023-04-11
2023-01-0822
Harmony-with-traffic refers to the ability of autonomous vehicles to maximize the driving benefits such as comfort, efficiency, and energy consumption of themselves and the surrounding traffic during interactive driving under traffic rules. In the test of harmony-with-traffic, one or more background vehicles that can respond to the driving behavior of the vehicle under test are required. For this purpose, the functional requirements of car-following model for harmony-with-traffic evaluation are analyzed from the dimensions of test conditions, constraints, steady state and dynamic response. Based on them, an interactive car-following model (ICFM) is developed. In this model, the concept of equivalent distance is proposed to transfer lateral influence to longitudinal. The calculation methods of expected speed are designed according to the different car-following modes divided by interaction object, reaction distance and equivalent distance.
Technical Paper

Performance Limitations Analysis of Visual Sensors in Low Light Conditions Based on Field Test

2022-12-22
2022-01-7086
Visual sensors are widely used in autonomous vehicles (AVs) for object detection due to the advantages of abundant information and low-cost. But the performance of visual sensors is highly affected by low light conditions when AVs driving at nighttime and in the tunnel. The low light conditions decrease the image quality and the performance of object detection, and may cause safety of the intended functionality (SOTIF) problems. Therefore, to analyze the performance limitations of visual sensors in low light conditions, a controlled light experiment on a proving ground is designed. The influences of low light conditions on the two-stage algorithm and the single-stage algorithm are compared and analyzed quantificationally by constructing an evaluation index set from three aspects of missing detection, classification, and positioning accuracy.
X