Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Study on the Performance-Determining Factors of Commercially Available MEA in PEMFCs

2020-04-14
2020-01-1171
Proton exchange membrane fuel cells (PEMFC), which convert the chemical energy into electrical energy directly through electrochemical reactions, are widely considered as one of the best power sources for new energy vehicles (NEV). Some of the major advantages of a PEMFC include high power density, high energy conversion efficiency, minimum pollution, low noise, fast startup and low operating temperature. The Membrane Electrode Assembly (MEA) is one of the core components of fuel cells, which composes catalyst layers (CL) coated proton exchange membrane (PEM) and gas diffusion layers (GDL). The performance of MEA is closely related to mass transportation and the rate of electrochemical reaction. The MEA plays a key role not only in the performance of the PEMFCs, but also for the reducing the cost of the fuel cells, as well as accelerating the commercial applications. Commercialized large-size MEA directly plays a major role in determining fuel cell stack and vehicle performance.
Journal Article

Development of Hardware and Software for On-Board Hydrogen System

2019-04-02
2019-01-0377
The fuel cell engine is considered to be the ultimate technical direction for the development of vehicle power. The on-board hydrogen supply system is important in fuel cell system. However, the on-board hydrogen supply system is diversified, and the management is mostly integrated in the engine controller. Thus, the fuel cell engine controller is excessive coupled with design of on-board hydrogen supply system. In order to improve the portability and compatibility of the fuel cell engine controller, an independent controller of the on-board hydrogen supply system is designed. Meanwhile, the hardware and software are developed to control 35Mpa gaseous hydrogen storage system. After being tested in a high-pressure environment, the controller can detect temperature, pressure and ambient hydrogen concentration of the hydrogen supply system. Simultaneously, it can drive and control the hydrogen cylinder valve.
Journal Article

The Direct Methanol Fuel Cell (DMFC): Determination of Model Parameters

2008-11-11
2008-01-2856
This paper is contributed to determining model parameters for DMFCs. Theoretical evaluations are carried out to set up the relationship between the unknown and measurable parameters or variables. A laboratory-scale liquid-feed cell was simulated under different operating conditions. The resulting measurable static performance curves are used as basic information. Some key kinetic and physical parameters can be determined or estimated for a DMFC model.
Technical Paper

Performance Parity Study of Electrified Class 8 Semi Trucks with Diesel Counterparts

2024-04-09
2024-01-2164
It is recognized that the heavier vehicles, the more emissions, thus the more imperative to electrify. In this study, long haul heavy-duty trucks are referred as HDTs, which are recognized as one of the hard-to-electrify vehicle segments, though the automotive industry has gained trending advantages of electrifying both light-duty cars and SUVs. Since big rigs such as Class 8 HDTs have significant road-block challenges for electrification due to the demanding long-hour work cycles in all weathers, this study focuses on quantifying those electrification challenges by taking advantage of the public data of Class 8 tractors & trailers. Tesla Semi is the research target though its vehicle spec data is sorted out with fragmentary information in the public domain. The key task is to analyze the battery capacity requirements due to environmental temperature and inherent aging over the lifespan.
X