Refine Your Search

Topic

Search Results

Journal Article

Analysis of Friction Induced Stability, Bifurcation, Chaos, Stick-slip Vibration and their Impacts on Wiping Effect of Automotive Wiper System

2014-04-01
2014-01-0021
A 2 DOF nonlinear dynamic model of the automotive wiper system is established. Complex eigenvalues are calculated based on the complex modal theory, and the system stability as well as its dependence on wiping velocity is analyzed. Bifurcation characteristics of frictional self-excited vibration and stick-slip vibration relative to wiping velocity are studied through numerical analysis. Research of nonlinear vibration characteristics under various wiping velocities is conducted by means of phase trajectories, Poincaré map and frequency spectrum. The pervasive stick-slip vibration during wiping is confirmed, and its temporal and spatial distributions are analyzed by way of time history and contour map. Duty ratio of stick vibration and statistics of scraping residual are introduced as quantitative indexes for wiping effect evaluation. Results indicate that the negative slop of frictional-velocity characteristic is the root cause of system instability.
Journal Article

Uncertainty Optimization of Thin-walled Beam Crashworthiness Based on Approximate Model with Step Encryption Technology

2016-04-05
2016-01-0404
Crashworthiness is one of the most important performances of vehicles, and the front rails are the main crash energy absorption parts during the frontal crashing process. In this paper, the front rail was simplified to a thin-walled beam with a cross section of single-hat which was made of steel and aluminum. And the two boards of it were connected by riveting without rivets. In order to optimize its crashworthiness, the thickness (t), radius (R) and the rivet spacing (d) were selected as three design variables, and its specific energy absorption was the objective while the average impact force was the constraint. Considering the error of manufacturing and measurements, the parameters σs and Et of the steel were selected as the uncertainty variables to improve the design reliability. The algorithm IP-GA and the approximate model-RBF (Radial Basis Function) were applied in this nonlinear uncertainty optimization.
Journal Article

Programmed Load Spectrum for Fatigue Bench Test of a Vehicle Body

2016-04-05
2016-01-0387
A compiled method of the programmed load spectrum, which can simplify and accelerate the fatigue bench test of a car body, is proposed and its effectiveness is checked by the fatigue simulation. By using the multi-body dynamics model with a satisfactory accuracy, the virtual iteration is applied to cascade body loads from the wheel hubs. Based on the rain-flow counting method and statistics theory, the distributions of the body loads are analyzed, and then the programmed load spectrum is compiled and simplified. Through comparative study, the simulation results of random and programmed load spectrum are found to agree well with each other in terms of the damage distribution and fatigue life, which demonstrates the effectiveness of the presented method.
Journal Article

Experimental Study of the Plasticity Responses of TRIP780 Steel Subjected to Strain-Path Changes

2016-04-05
2016-01-0363
The work-hardening response of TRIP780 steel subjected to strain-path changes was investigated using two-stage tension experiments. Large specimens were prestrained and then sub-sized samples were subjected to tension along various directions. The influence of strain-path changes on flow stress and work hardening performance was discussed in detail. The specific plastic work was calculated to compare the kinematic hardening behaviour after strain-path changes. The results showed that transient hardening was observed for TRIP780 sheets subjected to orthogonal strain-path change. The strain-hardening exponent (n-value) was influenced by prestraining levels and the strain path. The n-value exhibited a greater decrease under an orthogonal strain-path change. Prestraining can delay the onset of high work hardenability of TRIP steels. It is meaningful for the safety design of vehicles.
Technical Paper

Analysis of Vibroacoustic Behaviors and Torque Ripple of SRMs with Different Phases and Poles

2020-04-14
2020-01-0467
In this study, the vibroacoustic characteristics and torque fluctuation of switched reluctance motors (SRMs) with different phases and poles have been analyzed in detail. Also, the common four SRMs, i.e., three-phase 6/4 SRM, four-phase 8/6 SRM, five-phase 10/8 SRM, and six-phase 12/10 SRM, have been selected. First, the spatial-temporal distribution characteristics of radial force in SRMs were revealed by virtue of the analytical derivation, which was validated by the 2D Fourier decomposition based on the finite-element results of radial force. Second, a multiphysics model, which was composed of an electromagnetic field, a mechanical field, and an acoustic field, was established to predict the noise behaviors of SRMs with different phases and poles. Third, the relationship between the torque fluctuation and the phases / poles of SRMs, and the relationship between the noise and the radial force / phases / poles are all analyzed.
Technical Paper

IMM-KF Algorithm for Multitarget Tracking of On-Road Vehicle

2020-04-14
2020-01-0117
Tracking vehicle trajectories is essential for autonomous vehicles and advanced driver-assistance systems to understand traffic environment and evaluate collision risk. In order to reduce the position deviation and fluctuation of tracking on-road vehicle by millimeter-wave radar (MMWR), an interactive multi-model Kalman filter (IMM-KF) tracking algorithm including data association and track management is proposed. In general, it is difficult to model the target vehicle accurately due to lack of vehicle kinematics parameters, like wheel base, uncertainty of driving behavior and limitation of sensor’s field of view. To handle the uncertainty problem, an interacting multiple model (IMM) approach using Kalman filters is employed to estimate multitarget’s states. Then the compensation of radar ego motion is achieved, since the original measurement is under the radar polar coordinate system.
Journal Article

Investigation on Dynamic Recovery Behavior of Boron Steel 22MnB5 under Austenite State at Elevated Temperatures

2011-04-12
2011-01-1057
Hot forming process of ultrahigh strength boron steel 22MnB5 is widely applied in vehicle industry. It is one of the most effective approaches for vehicle light weighting. Dynamic recovery is the major softening mechanism of the boron steel under austenite state at elevated temperatures. Deformation mechanism of the boron steel can be revealed by investigation on the behavior of dynamic recovery, which could also improve the accuracy of forming simulations for hot stamping. Uniaxial tensile experiments of the boron steel are carried out on the thermo-mechanical simulator Gleeble3800 at elevated temperatures. The true stress-strain curves and the relations between the work hardening rate and flow stress are obtained in different deformation conditions. The work hardening rate decreases linearly with increasing the flow stress.
Journal Article

Differential Drive Assisted Steering Control for an In-wheel Motor Electric Vehicle

2015-04-14
2015-01-1599
For an electric vehicle driven by four in-wheel motors, the torque of each wheel can be controlled precisely and independently. A closed-loop control method of differential drive assisted steering (DDAS) has been proposed to improve vehicle steering properties based on those advantages. With consideration of acceleration requirement, a three dimensional characteristic curve that indicates the relation between torque and angle of the steering wheel at different vehicle speeds was designed as a basis of the control system. In order to deal with the saturation of motor's output torque under certain conditions, an anti-windup PI control algorithm was designed. Simulations and vehicle tests, including pivot steering test, lemniscate test and central steering test were carried out to verify the performance of the DDAS in steering portability and road feeling.
Technical Paper

Effect of Coflow Temperature on the Characteristics of Diesel Spray Flames and its Transient HC Distribution under Atmospheric Conditions

2007-10-29
2007-01-4028
A Controllable Active Thermo-Atmosphere (CATA) Combustor enables the investigation of stabilization mechanisms in an environment that decouples the turbulent chemical kinetics from the complex recirculating flow. Previous studies on combustion of the low-pressure fuel jets in the Controllable Active Thermo-Atmosphere (CATA) showed non-linear effect of coflow temperature on autoignition delay and the randomness of autoignition sites. In this work, a diesel spray is injected into the CATA with the injection pressure at 20MPa from a single-hole injector and the autoignition and combustion process of the spray is recorded by a high-speed camera video. The multipoint autoignition of diesel spray is observed in the CATA and the subsequent combustion process is analyzed. The results show that autoignition phenomenon plays an important role in the stabilization of the lifted flames of diesel spray under low coflow temperature.
Technical Paper

An Interactive Racing Car Driving Simulator Based on TCP/IP

2009-05-13
2009-01-1609
Real-time interaction between a driver and the simulator is problematic. In this study, the racing car driving simulator has been established, which is composed of the following functional components: Motion Controller, Simview, Scenario Editor, Application Programmer Interface (APIs) and Crash Simulation. With TCP/IP protocol, the Motion Controller receives driver's manipulation, road unevenness and crash situation of Simview, then generates motion streams that reflecting the current conditions, and sends them to Simview and to the hydraulic platform. Furthermore, by detecting and analyzing general vehicle two-dimensional impact, a kind of complete and applicable calculation method has been established, and complicated vehicle impacts can be analyzed accurately. This racecar driving simulator places a racing driver in a interactive environment, and provides the driver with high-fidelity motion, visual, auditory, and force feedback cues.
Technical Paper

Material Compatibilities of Biodiesels with Elastomers, Metals and Plastics in a Diesel Engine

2009-11-02
2009-01-2799
The effects of biodiesel on the swelling of the elastomers and plastics and the corrosion of metals are studied by the immersion tests. The results indicate that biodiesels make little corrosion effect on aluminum, steel and little swelling impact on plastics, but a significant corrosion may be taken place on cooper and brass for some sourced biodiesels. For nitrile-butadiene rubber, the variation of swelling properties in biodiesels is slightly higher than that in diesel. For the non-diesel-resistant elatomers, the variation of swelling properties is lower than those in diesel. The production process and biodiesel source have an influence on the result of elastomer swelling and corrosion. The relationship between the impact of biodiesel on materials and biodiesels properties are also discussed.
Technical Paper

Numerical Simulation of CFRP Thin-Walled Tubes Subjected to Quasi-Static Axial Crushing

2017-03-28
2017-01-0465
Carbon Fiber Reinforced Plastic (CFRP) tube is an important material for the lightweight design of automotive structures. Simulation method of CFRP thin-walled tubes subjected to axial compression using MAT54 in LS-DYNA was investigated. Based on the two-layer shell model combined with MAT54, failure strategy and the parameters sensitivity of the model were discussed in detail. Then the simulation model was verified by using duplicate specimens comprised of carbon fiber/epoxy unidirectional prepreg tape. Furthermore, the modeling methods of crush trigger and different types of loading speed were analyzed. In addition, based on the method of equal energy absorption, energy absorption performance of thin-walled circular and square tubes made from four materials including mild steel, high strength steel, aluminum alloy and CFRP were also compared.
Technical Paper

Predicting the Head-Neck Posture and Muscle Force of the Driver Based on the Combination of Biomechanics with Multibody Dynamics

2017-03-28
2017-01-0407
Biomechanics and biodynamics are increasingly focused on the automotive industry to provide comfortable driving environment, reduce driver fatigue, and improve passenger safety. Man-centered conception is a growing emphasis on the open design of automobile. During the long-term driving, occupational drivers are easily exposed to the neck pain, so it is important to reduce the muscle force load and its fatigue, which are not usually considered quantitatively during traditional ergonomics design, so standards related are not well developed to guide the vehicle design; On the other hand, the head-neck models are always built based on the statics theory, these are not sufficient to predict the instantaneous variation of the muscle force. In this paper, a head-neck model with multi DOFs is created based on multibody dynamics. Firstly, a driver-vehicle-road model considering driver multi-rigid body model, vehicle subsystems, and different ranks of pavement is built.
Technical Paper

Correlation Analysis of Interior and Exterior Wind Noise Sources of a Production Car Using Beamforming Techniques

2017-03-28
2017-01-0449
Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
Technical Paper

An ADAS-Oriented Virtual EPS Platform Based on the Force Feedback Actuator of the Steer-by-Wire System

2016-09-14
2016-01-1905
Electric Power Steering (EPS) is the actuator of several lateral-dynamic-related Advanced Driver Assistance Systems (ADAS). A driving simulator with EPS will be much helpful for the ADAS development. However, if a real EPS is used in the driving simulator, it is quite difficult to realize the road reaction force accurately and responsively. To overcome this weakness, a virtual EPS platform is established. The virtual EPS platform contains two parts: one is the vehicle and EPS model, the other is the force feedback actuator (FFA) of the Steer-by-Wire (SBW) system. The FFA is an interface between the driver and the EPS/vehicle model. The reactive torque of the FFA is obtained based on the models. Meanwhile, the input of the EPS model is the steering angle of the FFA. Comparing to a real EPS, the virtual EPS platform has a problem of instability because of the actuator lag of the FFA. Therefore, a damping control method is applied to make the system stable.
Technical Paper

Interactive Modes F-ANP Evaluation for In-Vehicle Secondary Tasks

2016-09-14
2016-01-1890
With the development of automotive HMI and mobile internet, many interactive modes are available for drivers to fulfill the in-vehicle secondary tasks, e.g. dialing, volume adjustment, music playing. For driving safety and drivers’ high expectation for HMI, it is urgent to effectively evaluate interactive mode with good efficiency, safety and good user experience for each secondary tasks, e.g. steering wheel buttons, voice control. This study uses a static driving simulation cockpit to provide driving environment, and sets up a high-fidelity driving cockpit based on OKTAL SacnerStudio and three-dimensional modeling technology. The secondary tasks supported by HMI platform are designed by customer demands research. The secondary task test is carried out based on usability test theory, and the influence on driving safety by different interactive modes is analyzed.
Technical Paper

Analysis of Driver Emergency Steering Behavior Based on the China Naturalistic Driving Data

2016-09-14
2016-01-1872
Based on the emergency lane change cases extracted from the China naturalistic driving data, the driving steering behavior divides into three phases: collision avoidance, lateral movement and steering stabilization. Using the steering primitive fitting by Gaussian function, the distribution of the duration time, the relationship between steering wheel rate and deflection were analyzed in three phases. It is shown that the steering behavior essentially is composed of steering primitives during the emergency lane-change. However, the combination of the steering primitives is different according to the specific steering constraints in three phases. In the collision avoidance phase, a single steering primitive with high peak is used for the fast steering; in the lateral movement and stabilization phase, a combination of two or even more steering primitives is built to a more accurate steering.
Technical Paper

In-Vehicle Driving Posture Reconstruction from 3D Scanning Data Using a 3D Digital Human Modeling Tool

2016-04-05
2016-01-1357
Driving posture study is essential for the evaluation of the occupant packaging. This paper presents a method of reconstructing driver’s postures in a real vehicle using a 3D laser scanner and Human Builder (HB), the digital human modeling tool under CATIA. The scanning data was at first converted into the format readable by CATIA, and then a personalized HB manikin was generated mainly using stature, sitting height and weight. Its pelvis position and joint angles were manually adjusted so as to match the manikin with the scan envelop. If needed, a fine adjustment of some anthropometric dimensions was also preceded. Finally the personalized manikin was put in the vehicle coordinate system, and joint angels and joint positions were extracted for further analysis.
Technical Paper

Optimal Design of Switching Frequency Based on Loss of PMSM and Inverter Used in Vehicle

2016-04-05
2016-01-1232
Different choices of IGBTs’ switching frequency of the PMSM inverter used in vehicle lead to different energy loss of the inverter. Meanwhile, they lead to different phase current harmonics, which result in different energy loss of the PMSM. Compared with traditional switching frequency design method, the optimal design method considers the loss of the PMSM as well as the inverter, proposing a minimum system loss switching frequency design method. Firstly, by establishing the IGBT model (Hefner Model) and the PMSM analytical model, obtain PMSM phase currents under different switching frequencies through simulating. The inverter energy loss is obtained at the same time. Then, the phase currents under different conditions are applied to the finite element model to obtain the distribution of the magnetic field strength H and the magnetic induction B, so that the PMSM loss can be calculated.
Technical Paper

Analysis of Geographically Distributed Vehicle Powertrain System Validation Platform Based on X-in-the-Loop Theory

2017-03-28
2017-01-1674
X-in-the-loop (XiL) framework is a validation concept for vehicle product development, which integrates different virtual and physical components to improve the development efficiency. In order to develop and validate an extended validation method based on XiL, Tongji University in Shanghai, China and the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany co- performed a feasibility study about an X-in-the-distance-loop demonstration platform. The X-in-the-distance-loop demonstration platform includes a MATLAB/Simulink software platform and geographically distributed equipment (driver simulator, driving electric motor and dynamometer test stand), which are used to conduct bidirectional experiments to test communication of powertrain data between China and Germany.
X