Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Development and Demonstration of a New Range-Extension Hybrid Powertrain Concept

2020-04-14
2020-01-0845
A new range-extension hybrid powertrain concept, namely the Tongji Extended-range Hybrid Technology (TJEHT) was developed and demonstrated in this study. This hybrid system is composed of a direct-injection gasoline engine, a traction motor, an Integrated Starter-Generator (ISG) motor, and a transmission. In addition, an electronically controlled clutch between the ISG motor and engine, and an electronically controlled synchronizer between the ISG motor and transmission are also employed in the transmission case. Hence, this system can provide six basic operating modes including the single-motor driving, dual-motor driving, serial driving, parallel driving, engine-only driving and regeneration mode depending on the engagement status of the clutch and synchronizer. Importantly, the unique dual-motor operation mode can improve vehicle acceleration performance and the overall operating efficiency.
Technical Paper

A Comparative Study on Energy Management Strategies for an Automotive Range-Extender Electric Powertrain

2021-12-31
2021-01-7027
In this work, the influences of various real-timely available energy management strategies on vehicle fuel consumption (VFC) and energy flow of a range-extender electric vehicle were studied The strategies include single-point, multi-point, speed-following, and equivalent consumption minimization strategy. In addition, the dynamic programming method which cannot be used in real time, but can provide the optimal solution for a known drive situation was used for comparison. VFCs and energy flow characteristics with different strategies under Worldwide Harmonized Light Vehicles Test Cycle (WLTC) were obtained through computer modeling, and the results were verified experimentally on a range-extender test bench. The experimental results are consistent with the modeled ones in general with a maximum deviation of 4.11%, which verifies the accuracy of the simulation models.
Technical Paper

MPC-Based Downhill Coasting-Speed Control Method for Motor-Driven Vehicles

2023-04-11
2023-01-0544
To improve the maneuverability and energy consumption of an electrical vehicle, a two-level speed control method based on model predictive control (MPC) is proposed for accurate control of the vehicle during downhill coasting. The targeted acceleration is planned using the anti-interference speed filter and MPC algorithm in the upper-level controller and executed using the integrated algorithm with the inverse vehicle dynamics and proportional-integral-derivative control model (PID) in the lower-level controller, improving the algorithm’s anti-interference performance and road adaptability. Simulations and vehicle road tests showed that the proposed method could realize accurate real-time speed control of the vehicle during downhill coasting. It can also achieve a smaller derivation between the actual and targeted speeds, as well as more stable speeds when the road resistance changes abruptly, compared with the conventional PID method.
Technical Paper

Modeling Analysis of Thermal Efficiency Improvement up to 45% of a Turbocharged Gasoline Engine

2022-10-28
2022-01-7051
Numerical analysis of thermal efficiency improvement up to 45% of an 1.8-liter turbocharged direct-injection (DI) gasoline engine was conducted in this study in response to the need of improving vehicle fuel economy. 1D thermodynamics simulations and 3D computational fluid dynamics (CFD) modeling were carried out to investigate the technical approaches for improving engine thermal efficiency. Effects of various technologies on the improvement in the engine performance were evaluated, and then the technical routes to achieve 41% and 45% brake thermal efficiency were summarized, respectively. It is concluded that 41% thermal efficiency can be reached under stoichiometric combustion conditions, while it is expected lean burn technology is needed for the target of 45% thermal efficiency. The effects of high tumble intake flow on accelerating burning speed and of high compression ratio on intensifying knocking were analyzed.
Technical Paper

Analytical Study on the Fuel-Saving Potentials of a Series Hybrid Electric Vehicle

2023-04-11
2023-01-0468
The fuel-saving potential of a series hybrid electric vehicle (SHEV) was investigated in this work based on the future goals and technical roadmaps proposed by China's automobile and internal combustion engine (ICE) industry. The genetic algorithm optimization method and dynamic programming energy management strategy are used to optimize the key component parameters of a typical SHEV SUV to improve the fuel economy of the vehicle. Results showed that the fuel consumption of the vehicle would be 3.24 L / 100km in 2035, which is 37.21% less than 5.16 L / 100km in 2020, following the industries’ roadmaps. The results also indicated that the improvement of the ICE’s thermal efficiency is the main reason for the decrease of the vehicle’s fuel consumption. In addition, the improvement of working points and the reduction of energy losses of the key components also contribute to the improvement of the fuel economy.
X