Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Optimization of Electric Vacuum Pump Mount to Improve Sound Quality of Electric Vehicle

2020-04-14
2020-01-1259
The noise and vibration of electric vacuum pump (EVP) become a major problem for electric vehicles when the vehicle is stationary. This paper aims at the EVP’s abnormal noise of an electric vehicle when stationary. Driver’s right ear (DRE) noise was tested and spectrogram analysis was carried out to identify the noise sources. In order to attenuate this kind of abnormal noise, a new EVP rubber mount with a segmented structure was introduced, which optimized the transfer path of vibration. Then dynamic stiffness and fatigue life of the EVP mount with different rubber hardness were calculated through finite element analysis (FEA) approach. Bench tests of fatigue life and DRE noise were performed to validate the FEA results. Test data of the sample mount shows that sound pressure level of DRE was dramatically attenuated and thus passengers’ ride comfort was enhanced.
Technical Paper

A Road Load Data Processing Method for Transmission Durability Optimization Development

2020-04-14
2020-01-1062
With increasing pressure from environment problem for reduction in CO2 emissions and stricter fuel targets from road vehicles, new transmission technologies are gaining more attention in different main market. To get suitable road load data for transmission durability development is becoming increasingly important and can shorten the development time of new transmission. This paper presents the procedure and methods of road load data development for durability design of transmission product and optimization based on the real road data measurement, statistical characteristics evaluation and fatigue damage equivalency. Apply this road load data method procedure on 3 type of vehicle which represent conventional vehicle, BEV and HEV.
Technical Paper

Full Vehicle Dynamic Modeling for Engine Shake with Hydraulic Engine Mount

2017-06-05
2017-01-1908
The statement of the engine shake problem is presented through comparing the quarter vehicle models with the rigid-connected and flexible-connected powertrain which is supported on the body by a rubber mount. Then the model is extended by replacing the rubber mount as a hydraulic engine mount (HEM) with regard to the inertia and resistance of the fluid within the inertia track. Based on these, a full vehicle model with 14 degree of freedoms (DOFs) is proposed to calculate the engine shake, which consists of 6 of the powertrain, 1 of the fluid within the inertia track of the HEM, 3 of the car body and 4 of the unsprung mass. Simulation analysis based on the proposed model is implemented, through which the conclusion is drawn that the HEM has great influence on the body and seat track response subjected to front wheel inputs, compared with the rubber mount.
Technical Paper

An Improved PID Controller Based on Particle Swarm Optimization for Active Control Engine Mount

2017-03-28
2017-01-1056
Manufacturers have been encouraged to accommodate advanced downsizing technologies such as the Variable Displacement Engine (VDE) to satisfy commercial demands of comfort and stringent fuel economy. Particularly, Active control engine mounts (ACMs) notably contribute to ensuring superior effectiveness in vibration attenuation. This paper incorporates a PID controller into the active control engine mount system to attenuate the transmitted force to the body. Furthermore, integrated time absolute error (ITAE) of the transmitted force is introduced to serve as the control goal for searching better PID parameters. Then the particle swarm optimization (PSO) algorithm is adopted for the first time to optimize the PID parameters in the ACM system. Simulation results are presented for searching optimal PID parameters. In the end, experimental validation is conducted to verify the optimized PID controller.
Technical Paper

Reward Function Design via Human Knowledge Graph and Inverse Reinforcement Learning for Intelligent Driving

2021-04-06
2021-01-0180
Motivated by applying artificial intelligence technology to the automobile industry, reinforcement learning is becoming more and more popular in the community of intelligent driving research. The reward function is one of the critical factors which affecting reinforcement learning. Its design principle is highly dependent on the features of the agent. The agent studied in this paper can do perception, decision-making, and motion-control, which aims to be the assistant or substitute for human driving in the latest future. Therefore, this paper analyzes the characteristics of excellent human driving behavior based on the six-layer model of driving scenarios and constructs it into a human knowledge graph. Furthermore, for highway pilot driving, the expert demo data is created, and the reward function is self-learned via inverse reinforcement learning. The reward function design method proposed in this paper has been verified in the Unity ML-Agent environment.
Technical Paper

Object Detection Method of Autonomous Vehicle Based on Lightweight Deep Learning

2021-04-06
2021-01-0192
Object detection is an important visual content of the autonomous vehicle, the traditional detecting methods usually cost a lot of computational memory and elapsed time. This paper proposes to use lightweight deep convolutional neural network (MobilenetV3-SSDLite) to carry out the object detection task of autonomous vehicles. Simulation analysis based on this method is implemented, the feature layer obtained after h-swish activation function in the first Conv of the 13th bottleneck module in MobilenetV3 is taken as the first effective feature layer, and the feature layer before pooling and convolution of the antepenultimate layer in MobilenetV3 is taken as the second effective feature layer, and these two feature layers are extracted from the MobilenetV3 network.
Technical Paper

Subjective and Objective Evaluation of APU Start-Stop NVH for a Range-Extended Electric Vehicle

2015-03-10
2015-01-0047
In recent years, electric vehicle and hybrid vehicle are either on the market or under intensive research and development (R&D). Since the concept of auxiliary power unit (APU) was brought into the automotive industry, the range-extended electric vehicle (ReEV) has become the favor of the worldwide manufacturers. Normally, the APU starts and stops more frequently in response to the control strategy compared with traditional vehicles, which will affect the ride comfort of passengers. Thus, APU start-stop NVH refinement is an important aspect of ReEV R&D. In this paper, a subjective evaluation on a ReEV was performed to quickly diagnose NVH issues firstly. Based on subjective results, the NVH experiment in a semi-anechoic room was carried out to troubleshoot these issues. The accelerations of the APU mounts, the seat track and the steering wheel as well as interior noise level were acquired and analyzed.
X