Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparison and Analysis of Real Driving Emissions with Different Processing Methods and Driving Behaviors from a Light-Duty Gasoline Vehicle

2022-03-29
2022-01-0573
Real driving emission (RDE) tests are influenced by factors such as data processing methods, driving behaviors, and environmental conditions. Therefore, being able to effectively identify test influence factors is particularly important for RDE emissions-based calibrations. In order to investigate the correlation between data processing methods, driving behaviors and vehicle emissions, the moving average window (MAW) method and cumulative averaging (CA) method were used to compare and analyze the RDE tests data of a light-duty gasoline vehicle under different driving modes in this study. The results showed that in MAW method, carbon monoxide (CO) emissions of urban and total trips calculated by using the front to back window division order were slightly lower compared to the back to front window division order, with an average reduction of 4.68% and 6.33%, respectively. For carbon dioxide (CO2) emissions, the order of window division had the opposite effect as for CO emissions.
Technical Paper

Assessing and Characterizing the Effect of Altitude on Fuel Economy, Particle Number and Gaseous Emissions Performance of Gasoline Vehicles under Real Driving

2023-04-11
2023-01-0381
High altitudes have a significant effect on the real driving emissions (RDE) of vehicles due to lower pressure and insufficient oxygen concentration. In addition, type approval tests for light-duty vehicles are usually conducted at altitudes below 1000 m. In order to investigate the influence of high altitude on vehicles fuel economy and emissions, RDE tests procedure had been introduced in the China VI emission regulations. In this study, the effect of altitude on fuel economy and real road emissions of three light-duty gasoline vehicles was investigated. The results indicated that for vehicles fuel economy, fuel consumption (L/100 km) for the tested vehicles decreased while the mean exhaust temperature increased with an increase in altitudes. Compared to near sea level, the fuel consumption (L/100 km) of the tested vehicle was reduced by up to 23.28%.
Technical Paper

Assessing the Effects of Computational Model Parameters on Aerodynamic Noise Characteristics of a Heavy-Duty Diesel Engine Turbocharger Compressor at Full Operating Conditions

2024-04-09
2024-01-2352
In recent years, with the development of computing infrastructure and methods, the potential of numerical methods to reasonably predict aerodynamic noise in turbocharger compressors of heavy-duty diesel engines has increased. However, aerodynamic acoustic modeling of complex geometries and flow systems is currently immature, mainly due to the greater challenges in accurately characterizing turbulent viscous flows. Therefore, recent advances in aerodynamic noise calculations for automotive turbocharger compressors were reviewed and a quantitative study of the effects for turbulence models (Shear-Stress Transport (SST) and Detached Eddy Simulation (DES)) and time-steps (2° and 4°) in numerical simulations on the performance and acoustic prediction of a compressor under various conditions were investigated.
X