Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

The Safety and Dynamic Performance of Blended Brake System on a Two-Speed DCT Based Battery Electric Vehicle

2016-04-05
2016-01-0468
Regenerative braking has been widely accepted as a feasible option to extend the mileage of electric vehicles (EVs) by recapturing the vehicle’s kinetic energy instead of dissipating it as heat during braking. The regenerative braking force provided by a generator is applied to the wheels in an entirely different manner compared to the traditional hydraulic-friction brake system. Drag torque and efficiency loss may be generated by transmitting the braking force from the motor, axles, differential and, specifically in this paper, a two-speed dual clutch transmission (DCT) to wheels. Additionally, motors in most battery EVs (BEVs) and hybrid electric vehicle (HEVs) are only connected to front or rear axle. Consequently, conventional hydraulic brake system is still necessary, but dynamic and supplement to motor brake, to meet particular brake requirement and keep vehicle stable and steerable during braking.
Technical Paper

Impact of Low and High Congestion Traffic Patterns on a Mild-HEV Performance

2017-10-08
2017-01-2458
Driven by stricter mandatory regulations on fuel economy improvement and emissions reduction, market penetration of electrified vehicles will increase in the next ten years. Within this growth, mild hybrid vehicles will become a leading sector. The high cost of hybrid electric vehicles (HEV) has somewhat limited their widespread adoption, especially in developing countries. Conversely, it is these countries that would benefit most from the environmental benefits of HEV technology. Compared to a full hybrid, plug-in hybrid, or electric vehicle, a mild hybrid system stands out due to its maximum benefit/cost ratio. As part of our ongoing project to develop a mild hybrid system for developing markets, we have previously investigated improvements in drive performance and efficiency using optimal gearshift strategies, as well as the incorporation of high power density supercapacitors.
Technical Paper

Parameter Design of a Parallel Hydraulic Hybrid Vehicle Driving System Based on Regenerative Braking Control Strategy

2019-04-02
2019-01-0368
In this paper, hydraulic driving system parameters of a parallel hydraulic hybrid vehicle are designed based on the regenerative braking requirement. Torque, speed and power demands during typical driving cycles are analyzed. The braking control strategy is designed considering both the braking safety and braking energy recovery efficiency. The hydraulic braking torque is determined by the braking control strategy. The proportional relationship of hydraulic pump/ motor output torque and its working pressure is considered. Through simulation with typical city driving cycles, most braking energy can be recovered by the proposed hydraulic driving system and braking control strategy.
X