Refine Your Search

Topic

Author

Search Results

Technical Paper

Analysis of a New Automatic Transmission Control System for LEXUS LS400

1991-02-01
910639
A new automatic transmission, engineered from concept for “intelligent” and “anti-aging” (long life), has been designed and developed for TOYOTA's luxury passenger car, LEXUS LS400. This system, which has resulted in silky-smooth shift quality without changes in the long term, is composed of a transmission computer that interacts with engine computer, a number of sensors, an electronically controlled hydraulic unit with linear solenoid valves and assorted devices. As new control logic being developed with the aid of computer simulation to achieve distinction, the hydraulic and engine controls are combined in this system. There is a “feedback control”, where the clutch pressure is controlled according to the rate of acceleration and compensated for dispersion to applied pressure, engine torque and/or the coefficient of dynamic friction of clutches, and at the same time engine torque is reduced by retarding ignition timing.
Technical Paper

Next Generation High Performance ATF for Slip-Controlled Automatic Transmission

1997-10-01
972927
A slip-controlled lock-up clutch system Is very efficient in improving the fuel economy of automatic transmission (AT) equipped vehicles. However, a special automatic transmission fluid (ATF) which combines an anti-shudder property with high torque capacity is required for this system. In this study, we established additive technology for ATF having a sufficient anti-shudder property and high torque capacity. Based on the technology, new ATF: ATF-T4 was developed. It was confirmed in actual AT tests that ATF-T4 has excellent anti-shudder durability and high torque capacity. Furthermore, ATF-T4 has good SAE No. 2 friction characteristics, oxidation stability, compatibility with materials (elastomers, nylons, etc.) and viscosity at low temperatures.
Technical Paper

Toyota New Compact Five-Speed Automatic Transmission for RWD Passenger Cars

1998-02-23
980820
A new compact five-speed automatic transmission (A650E) has been developed for front engine rear wheel drive cars. The development of this transmission has been aimed at improving fuel consumption, power performance, engine noise reduction during highway cruising and smooth acceleration by employing a wide range of gearing and close gear ratios. Generally a five-speed automatic transmission is larger than a four-speed, because of additional friction elements and gears. This can result in a change in the floor panel of the car body. However, by removing a one-way clutch for second gear and employing a unique gear-train layout, this transmission has the same circumference and length as the conventional four-speed automatic transmission (A340E)(1).1 In order to reduce first or second gear noise, gear specification and supporting structures of planetary gears have been optimized by FEM analysis.
Technical Paper

A Study of Additive Effects on ATF Frictional Properties Using New Test Methods

1990-10-01
902150
A new test machine has been developed which can evaluate vibration due to stick-slip using an actual full-scale clutch pack. Using this machine, a static breakaway friction coefficient measurement test method and a stick-slip test method have been established. Both methods have been shown to provide results which correlate with the results from both a full-scale assembly test and a vehicle shudder evaluation test. The evaluation of the frictional properties of commercial oils using these test methods showed that the static breakaway friction coefficient and the stick-slip properties have generally contradictory performance to each other for automatic transmission. The study of the frictional properties for typical additives and an analysis of the surface of the steel plates with ESCA (Electron Spectroscopy for Chemical Analysis) showed that the frictional properties are significantly affected by the additives adsorbed on the clutch plate sliding surface.
Technical Paper

Toyota's New Six-Speed Automatic Transmission AB60E for RWD Vehicles

2007-04-16
2007-01-1098
Toyota Motor Corporation has developed a new six-speed automatic transmission AB60E for longitudinal front engine rear wheel drive (RWD) vehicles. This transmission development was aimed at an improvement of power performance and fuel economy, while achieving a lightweight, compact package and a high torque capacity. In order to achieve this target, a high-capacity ultra-flat torque converter, a highly-rigid transmission case, and an ATF warmer with a valve to switch ATF circuits to an air-cooled ATF cooler have been newly developed. Moreover, a new transmission mode control logic “TOW / HAUL” has been developed to improve power performance and driveability during trailer towing. This automatic transmission has adopted the same gear train and hydraulic control system as the conventional six-speed automatic transmission A760E. This paper describes the structure, major features and performance of the transmission in detail.
Technical Paper

Toyota's World First 8-Speed Automatic Transmission for Passenger Cars

2007-04-16
2007-01-1101
TOYOTA has developed the world's first eight-speed automatic transmission (AA80E) for front-engine, rear-drive passenger cars. The AA80E developed for high-torque engines raises the level of power performance and fuel efficiency. To meet the size requirements needed for mounting in a passenger car application, an 8-speed geartrain, torque converter, transmission case and hydraulic control device were all newly-developed. Furthermore, the AA80E has benefited from technical developments to achieve an extremely high level of quietness and shifting performance. In this paper, the details of the AA80E are introduced.
Technical Paper

Automatic Transmission Control System Developed for Toyota Mild Hybrid System (THS-M)

2002-03-04
2002-01-1253
Environmental improvement is moving forward, due in part to the reduction of fuel consumption of automatic transmission(AT) vehicles as a result of social requirements in recent years and many measures have been implemented. Adoption of idling stop is a typical example introduced to reduce energy consumption while the vehicle is stopped to improve the urban environment. However, there are problems such as responsiveness and smoothness for an AT vehicle when the engine is stopped with the shift selector in “D” range. To overcome these problems, a new start clutch control system has been developed using an electric oil pump installed in a simple hybrid vehicle called a mild hybrid. As a result, a smooth feeling starting performance is achieved by operating the system in combination with the engine and other systems.
Technical Paper

Development of Toyota's Transaxle for Mini-Van Hybrid Vehicles

2002-03-04
2002-01-0931
Toyota introduced the world's first mass-produced hybrid passenger car, the Prius, in December 1997. In June 2001, Toyota developed the Toyota Hybrid System-CVT (THS-C). This new hybrid system for mini-vans was mounted on the Estima Hybrid. A new transaxle was developed for the front drive unit of the THS-C system that is compact, lightweight, and highly efficient. The unit achieves excellent driving comfort with smooth speed change by CVT control. High-level driving power control is provided via a wet multiple disc clutch. This paper introduces and explains the following aspects of the THS-C system: 1. Compact and lightweight technologies 2. High-efficiency technologies 3. Electronic CVT and clutch control technologies.
Technical Paper

Three-Dimensional Simulation of the Flow in a Torque Converter

1991-02-01
910800
This paper describes a simulation study of the internal fluid flow of a torque converter. The study was conducted by using the steady-interaction technique to connect the boundaries between neighboring elements. This technique averages the flow variables in the circumferential direction on the connecting boundary surfaces. A comparison of computational results with experimental data gives an estimate of the accuracy in predicting torque converter performance with this method.
Technical Paper

The World's First Transverse 8-Speed Automatic Transmission

2013-04-08
2013-01-1274
We have developed the world's first 8-speed automatic transmission for transverse FWD/4WD vehicles. The aim of this new automatic transmission was to achieve world-class fuel economy while offering both smooth gear shift and sporty shift feeling suitable for luxury cars. This has been accomplished using wide spread gear ratio, outstanding low drag components and highly efficient hydraulic control system. In addition, we have achieved the compactness similar to current 6-speed automatic transmission by adopting new gear train and compact clutch layout. In this paper, the detail of this automatic transmission is introduced.
Technical Paper

Development of a Super-Flat Torque Converter for the New Toyota FWD 6-Speed Automatic Transaxle

2006-04-03
2006-01-0149
Toyota Motor Corporation has developed a new super-flat torque converter for the Flex Start System. It is installed in a new six-speed automatic transaxle (U660E) for front engine, front wheel drive vehicles. The Flex Start System is the first technology in the world that can start smoothly and reduce torque converter slipping loss by using a lock-up clutch at start. The newly developed super-flat torus achieves a high torque capacity and a maximum efficiency of 90%. Fuel economy is increased further by adding an efficient damper for low-speed lock-up in the free space provided by utilizing the super-flat torus. Toyota also developed a simple and super-flat structure at the one-way clutch (O.W.C.) area. This paper describes the structure, features, and performance of this new torque converter and the Flex Start System.
Technical Paper

Toyota's New Five-Speed Automatic Transmission A750E/A750F for RWD Vehicles

2003-03-03
2003-01-0595
Toyota Motor Corporation has developed a new five-speed automatic transmission (A750E/A750F) for longitudinal front engine rear wheel drive (RWD) vehicles. The development of this transmission has been aimed at improving fuel economy and power performance, achieving the world's top-level weight and compactness, while maintaining high torque capacity. In order to achieve this purpose, the gear train, torque converter, and other components are completely changed, and advanced technology has been applied. Moreover, this automatic transmission has achieved high-quality shift feel and quiet performance. This paper describes the major features and performance of this transmission in detail.
Technical Paper

Torque Converter Clutch Slip Control System

1995-02-01
950672
The torque converter clutch slip control system adopted in the Toyota A541E automatic transaxle engages the torque converter clutch by applying a steady slip speed to prevent the torque fluctuation of the engine to be transmitted to the drivetrain while enhancing the transmission efficiency of the torque converter. The feedback controller of the slip speed adopts the H∞ (H-Infinity) control theory which offers a high level of robust stability, and is the first of its kind in a mass produced component. As a result, a highly accurate and reliable system has been realized, contributing to large-scale fuel economy.
Technical Paper

Development of Automatic Transmission Fluid for Slip-Controlled Lock-Up Clutch Systems

1995-10-01
952348
Slip-controlled lock-up clutch systems are very efficient and greatly improve fuel economy. On the other hand, these systems can cause unstable vibrations including those known as “shudder vibrations”. In this study, the authors made a theoretical analysis of these unstable vibrations to clarify the fundamental frictional properties of automatic transmission fluids (ATFs) required for slip-controlled lock-up clutch systems. Based on this analysis, we established lubricant technology having a sufficient anti-shudder property and high torque capacity. Further, we developed a new test apparatus to evaluate the anti-shudder durability for lubricant development.
Technical Paper

Development of High Fatigue Strength Spring - Application on Clutch Disc Torsional Damper

1995-02-01
950903
We have developed a new torsional damper spring which lowers the torsional rigidity of the clutch disc while retaining its conventional size. The following two items have been adopted in the newly developed spring: 1) A new steel wire which suppresses any core-softening of the element wire through nitriding. 2) A dual-stage shot peening method which uses harder steel shots (rather than conventional shots) in order to obtain an optimal residual stress profile. As a result of evaluating the fatigue characteristics of this spring, it was discovered that its fatigue strength is approximately 35% higher than that of the conventional spring. A clutch disc using this spring was able to absorb rattling noises which conventional clutch discs could not.
Technical Paper

An Analysis of Clutch Self-Excited Vibration in Automotive Drive Line

1995-05-01
951319
This paper presents a new method of predicting judder occurrence. In this method, the friction characteristics of the clutch, that is, the relationship between the slip speed and the friction coefficient, and torsional vibration characteristics of the drive line are both considered. Judder occurrence is judged by calculating complex eigen values of a torsional vibration model of the drive line considering the clutch friction characteristics. This method is applied to judder phenomena of automatic transmissions. Comparisons between calculations and experiments are shown. Studies of the influence of viscous damping coefficients of drive line units are also described.
Technical Paper

Toyota New Four-Speed Automatic Transmission for Front Wheel Drive Vehicles

1984-02-01
840049
The design requirement for more efficient vehicle moves a compact car toward front wheel drive arrangement, which requires an entire redesign of its power train. Toyota, with systematic approach from its planning stage, has developed a new automatic transmission series including one 3-speed and two 4-speed transmissions. An extensive examination on gear train arrangements enabled the 3-speed light, compact and highly reliable under the arrangement of Simpson gear train, and freewheel shifts with one-way clutches at every shifting. Two different 4th gear packages with freewheel shift are combined with the 3-speed unit to provide the versatility for the 4-speed units in various installations. Besides, these transmissions feature lock-up clutch converter, oil pump of a new tooth profile and two different control systems: hydraulic and electro-hydraulic.
Technical Paper

A Computer Controlled Transfer for Four-Wheel Drive Vehicles

1985-02-01
850354
The purpose of this paper is to outline a new computer controlled transfer for four-wheel drive vehicles, which AISIN-WARNER LIMITED of Japan has developed in cooperation with TOYOTA MOTOR CORPORATION. Certain difficulties still remain with shafting of a conventional transfer. Coupled with a 4-speed automatic transmission, the new transfer discussed in this paper consists of 3 wet clutches, a simple planetary gear set, a chain for front drive and a control unit. This transmission-transfer combination (30-80LE) has realized “ON THE GO SHIFT” for easier operations of the 4WD applications.
Technical Paper

Toyota EC-HYMATIC – A New Full Time 4WD System for Automatic Transmission

1989-02-01
890526
Toyota has developed a new full time 4WD system, called “EC-HYMATIC” or Electronically Controlled - HYdraulic Multi-plate clutch Active Traction Intelligent Control. This system permits an automatic torque transfer, depending on driving conditions, for front and rear wheels under control of the speed difference between the two. The system developed consists of a center differential, a speed difference control clutch system employing multi-plate clutch, and a gear set for rear axle drive. The speed difference control clutch system is controlled by a unique electro-hydraulic system using a microcomputer. An extensive use of computer simulations and vehicle test and evaluation has successfully developed an appropriate control strategy for the clutch system. The new 4WD system, EC-HYMATIC, considerably improves handling characteristics, traction performance and stability of a 4WD vehicle.
Technical Paper

Application of Computer Graphics to Drive Train Engineering at Toyota Motor

1986-02-01
860388
A computer aided design system has been developed to greatly improve productivity in drive train engineering. The purpose of this system is to computerize the design and drafting process which occupies so many man-hours in drive train engineering activities. Investigation of the drive train design and drafting process has clarified the requirements of the computer aided system. As a result, a turn-key system has been selected because the system almost satisfies the requirements. In order to make this system more effective, numerous application programs for the drive train design have been developed and the drawing data have been accumulated intentionally as the database of this system. This paper describes some application programs, in particular, details of two programs which have shown themselves to be an effective means for design. One is a torque converter design system and the other is a tolerance stack up program.
X