Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of Sound Source Search Technology for High Frequency Noise in Vehicle Interiors

2009-05-19
2009-01-2172
Continuously variable transmission (CVT) and hybrid systems, which have metal belts and electrical units not found in conventional transmissions, are susceptible to extremely High Frequency belt and electromagnetic noise between 5 to 10 kHz. The evaluation and reduction of high frequency (HF) noise of 5 kHz and more is therefore a critical point for improving the quietness of vehicles installed with such systems. This article describes new sound source search technology capable of identifying sources of noise up to 15 kHz in the vehicle interior. Unlike conventional beamforming methods, this new system uses an improved microphone array provided with additional acoustic material. This article outlines the development of the system and its application to sound source identification of HF noise in a hybrid vehicle.
Technical Paper

Toyota’s New Driveline for FR Passenger Vehicles

2017-03-28
2017-01-1130
The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
X