Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

A Custom Integrated Circuit with On-chip Current-to-Digital Converters for Active Hydraulic Brake System

2016-04-05
2016-01-0091
This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
Journal Article

An Application of a Model-Prediction-Based Reference Modification Algorithm to Engine Air Path Control

2017-03-28
2017-01-0586
In real-world automotive control, there are many constraints to be considered. In order to explicitly treat the constraints, we introduce a model-prediction-based algorithm called a reference governor (RG). The RG generates modified references so that predicted future variables in a closed-loop system satisfy their constraints. One merit of introducing the RG is that effort required in control development and calibration would be reduced. In the preceding research work by Nakada et al., only a single reference case was considered. However, it is difficult to extend the previous work to more complicated systems with multiple references such as the air path control of a diesel engine due to interference between the boosting and exhaust gas recirculation (EGR) systems. Moreover, in the air path control, multiple constraints need to be considered to ensure hardware limits. Hence, it is quite beneficial to cultivate RG methodologies to deal with multiple references and constraints.
Journal Article

Development of New Electronically Controlled Hydraulic Unit for Various Applications

2016-04-05
2016-01-1660
The use of hybrid, fuel cell electric, and pure electric vehicles is on the increase as part of measures to help reduce exhaust gas emissions and to help resolve energy issues. These vehicles use regenerative-friction brake coordination technology, which requires a braking system that can accurately control the hydraulic brakes in response to small changes in regenerative braking. At the same time, the spread of collision avoidance support technology is progressing at a rapid pace along with a growing awareness of vehicle safety. This technology requires braking systems that can apply a large braking force in a short time. Although brake systems that have both accurate hydraulic control and large braking force have been developed in the past, simplification is required to promote further adoption.
Journal Article

Development of CFD Inverse Analysis Technology Using the Transient Adjoint Method and Its Application to Engine In-Cylinder Flow

2016-04-05
2016-01-0607
Conventional CFD-based shape optimization technology that uses parametric shape modification and optimal solutions searching algorithms has the two problems: (1) outcome of optimized shapes depend on the selection of design parameters made by the designer, and (2) high computational costs. To resolve those problems, two innovative inverse analysis technologies based on the Adjoint Method were developed in previous study: surface geometry deformation sensitivity analysis to identify the locations to be modified, and topology optimization to generate an optimal shape for maximizing the cost function in the constrained design space. However, these technologies are only applicable to steady flows. Since most flows in a vehicle (such as engine in-cylinder flow) are transient, a practical technology for surface geometry sensitivity analysis has been developed based on the Transient Adjoint Method.
Journal Article

High Efficiency Electromagnetic Torque Converter for Hybrid Electric Vehicles

2016-04-05
2016-01-1162
A new concept of an electromagnetic torque converter for hybrid electric vehicles is proposed. The electromagnetic torque converter, which is an electric system comprised of a set of double rotors and a stator, works as a high-efficiency transmission in the driving conditions of low gear ratio including a vehicle moving-off and as a starting device for an internal combustion engine. Moreover, it can be used for an electric vehicle driving as well as for a regenerative braking. In this concept, a high-efficiency drivetrain system for hybrid electric vehicles is constructed by replacing a fluid-type torque converter with the electromagnetic torque converter in the automatic transmission of a conventional vehicle. In this paper, we present the newly developed electromagnetic torque converter with a compact structure that enables mounting on a vehicle, and we evaluate its transmission efficiency by experiment.
Journal Article

Pedestrian/Bicyclist Limb Motion Analysis from 110-Car TASI Video Data for Autonomous Emergency Braking Testing Surrogate Development

2016-04-05
2016-01-1456
Many vehicles are currently equipped with active safety systems that can detect vulnerable road users like pedestrians and bicyclists, to mitigate associated conflicts with vehicles. With the advancements in technologies and algorithms, detailed motions of these targets, especially the limb motions, are being considered for improving the efficiency and reliability of object detection. Thus, it becomes important to understand these limb motions to support the design and evaluation of many vehicular safety systems. However in current literature, there is no agreement being reached on whether or not and how often these limbs move, especially at the most critical moments for potential crashes. In this study, a total of 832 pedestrian walking or cyclist biking cases were randomly selected from one large-scale naturalistic driving database containing 480,000 video segments with a total size of 94TB, and then the 832 video clips were analyzed focusing on their limb motions.
Journal Article

Development of System Control for Rapid Warm-up Operation of Fuel Cell

2012-04-16
2012-01-1230
Cold weather operation has been a major issue for fuel cell hybrid vehicles (FCHV). To counteract the effects of low temperatures on FCHV operation, an approach for rapid warm-up operation based on concentration overvoltage increase and conversion efficiency decrease by limiting oxygen or hydrogen supply was adopted. In order to suppress increases in exhaust hydrogen concentration due to pumping hydrogen during rapid warm-up, dilution control using bypass air and reduction of concentration overvoltage by a minimum voltage guard were implemented. These approaches effectively control waste heat generation and suppress exhaust hydrogen concentrations during cold start and warm-up. These developments were incorporated into the 2008 Toyota FCHV-adv and it was confirmed that the rapid warm-up operation strategy allowed the FCHV-adv to be successfully and repeatedly started at -30°C.
Journal Article

Application of Reference Governor Using Soft Constraints and Steepest Descent Method to Diesel Engine Aftertreatment Temperature Control

2013-04-08
2013-01-0350
This paper considers an application of reference governor (RG) to automotive diesel aftertreatment temperature control. Recently, regulations on vehicle emissions have become more stringent, and engine hardware and software are expected to be more complicated. It is getting more difficult to guarantee constraints in control systems as well as good control performance. Among model-based control methods that can directly treat constraints, this paper focuses on the RG, which has recently attracted a lot of attention as one method of model prediction-based control. In the RG, references in tracking control are modified based on future prediction so that the predicted outputs in a closed-loop system satisfy the constraints. This paper proposes an online RG algorithm, taking account of the real-time implementation on engine embedded controllers.
Technical Paper

Smart Algorithm for a Tire Pneumatic Pressure Monitor Embedded in ABS Program

1998-02-23
980237
This paper describes methods to attain a low cost tire pneumatic pressure monitor. We already established two kinds of algorithms for indirect detection of under-inflated tires without requiring any air pressure sensors. One method is to use a disturbance observer and the least mean square method. The other method is to compare the loaded radii of the tires. We have developed an algorithm that reduces the number of calculations needed, while maintaining a relatively small program size, and realized a tire pneumatic pressure monitor that does not require any hardware cost, by incorporating it into the program for the antilock brake system (ABS).
Technical Paper

High-pressure Metal Hydride Tank for Fuel Cell Vehicles

2007-07-23
2007-01-2011
High-pressure metal hydride (MH) tank has been designed based on a 35 MPa cylinder vessel. The heat exchanger module is integrated into the tank. Its advantage over high-pressure cylinder vessels is its large hydrogen storage capacity, for example 9.5 kg with a tank volume of 180 L by Ti25Cr50V20Mo5 alloy. Cruising range is about 900 km, over 3 times longer than that of a 35 MPa cylinder vessel system with the same volume. The hydrogen-charging rate of this system is equal to the 35 MPa cylinders without any external cooling facility. And release of hydrogen at 243 K is enabled due to the use of hydrogen-absorbing alloy with high-dissociation pressure, for example Ti35Cr34Mn31 alloy.
Technical Paper

The Impact of RON on SI Engine Thermal Efficiency

2007-07-23
2007-01-2007
Recently, global warming and energy security have received significant attention. Thus an improvement of the vehicle fuel economy is strongly required. For engines, one effective way is to improve the engine thermal efficiency. Raising compression ratio [1] or turbo charging technologies have potential to achieve high thermal efficiency. However knock does not allow the high thermal efficiency. Knock depends on the fuel composition and the pressure and temperature history of unburnt end-gas [2-3]. For fuels, RON is well known for describing the anti knock quality. High RON fuels have high anti knock quality and result in higher thermal efficiency. This paper investigates the impact of high RON fuels on the thermal efficiency by using high compression ratio engine, turbo charged engine, and lean boosted engine [4]. Finally, it is shown that the high thermal efficiency can be approached with high RON gasoline and ethanol.
Technical Paper

GTL Fuel Impact on DI Diesel Emissions

2007-07-23
2007-01-2004
Reduction of exhaust emissions was investigated in a modern diesel engine equipped with advanced diesel after treatment system using a Gas-to-Liquid (GTL) fuel, a cleaner burning alternative diesel fuel. This fuel has near zero sulfur and aromatics and high cetane number. Some specially prepared GTL fuel samples were used to study the effects of GTL fuel distillation characteristics on exhaust emissions before engine modification. Test results indicated that distillation range of GTL fuels has a significant impact on engine out PM. High cetane number also improved HC and CO emissions, while these fuel properties have little effect on NOx emissions. From these results, it was found that low distillation range and high cetane number GTL fuel can provide a favorable potential in NOx/PM emissions trade-off. In order to improve the tail-pipe emissions in the latest diesel engine system, the engine modifications were carried out for the most favorable GTL fuel sample.
Technical Paper

Feasibility Study of Ethanol Applications to A Direct Injection Gasoline Engine

2007-07-23
2007-01-2037
Feasibility studies concerning ethanol utilization in direct injection gasoline engines were conducted in order to clarify the effects of ethanol on engine performance, exhaust emissions and injector deposit formation. The investigation results indicate that E100 (100% ethanol fuel) can improve full load engine performance around whole engine speed range in a high compression ratio engine (ε=13:1), compared to that of a base compression ratio engine (ε=11.5:1) operated on a premium gasoline. This was caused by the volumetric efficiency (ηv) improvement and engine knock suppression in the high compression ratio engine. On the other hand, HC emissions remarkably increased under lower engine speeds at a full load condition. This phenomenon suggests that poor combustion occurred due to insufficient mixing of air and E100 fuel under these conditions, in which the amount of ethanol injected was too large and fluidity in the cylinder was weak.
Technical Paper

Vegetable Oil Hydrogenating Process for Automotive Fuel

2007-07-23
2007-01-2030
From the viewpoint of primary energy diversification and CO2 reduction, interests of using Biomass Fuel are rising. Some kinds of FAME (Fatty Acid Methyl Ester), which are obtained from oil fats like vegetable oil using transesterification reaction with methanol, are getting Palm Oilpular for bio-diesel recently. In this study, we have conducted many experiments of palm oil hydrogenations using our pilot plants, and checked the reactivity and the pattern of product yields. As a result, we figured out that the hydrocarbon oil equivalent to the conventional diesel fuel can be obtained from vegetable oils in good yield under mild hydrogenation conditions. Moreover, as a result of various evaluations for the hydrogenated palm oil (oxidation stability, lowtemperature flow property, LCA, etc.), we found that the hydrogenated palm oil by our technology has performances almost equivalent to conventional diesel fuel.
Technical Paper

High Concentration Ethanol Effect on SI Engine Cold Startability

2007-07-23
2007-01-2036
From the energy security and CO2 discharge reduction point of view, much attention has been paid to the usage of biofuel, ethanol, as an alternative source of energy in the transportation industry. Yet, the major drawback in applying highly concentrated ethanol in the spark ignited internal combustion engines is cold start instability. This is due to the characteristics of ethanol, large latent heat required to vaporize. This paper investigates necessary conditions for the engine cold start, using highly concentrated ethanol. Tests performed with varieties of ethanol fuel, a relationship between cold startability lower temperature limit and reid vapor pressure was observed. A method to boost the vaporization, intake valve timing control is introduced to obtain high compression peak temperature.
Technical Paper

Development of Active Rear Steer System Applying H∞-μ synthesis

1998-02-23
981115
A new active rear steer (ARS) system has been developed. ARS is an electric four wheel steering system controlled by new logic(designed by H∞-μ synthesis) which maintains good control performance even if the vehicle parameters and /or road surface conditions are changed. ARS control is a typical technology to prevent vehicle side -slip in linear region of tire characteristic. This system offers easy control and reduces vehicle behavior of yawing motion before approaching critical limit. By combining ARS and vehicle stability control (VSC), it is possible to support driving precisely from normal driving to excessive driving. This paper describes the details of this new system which has been installed on 1997 model TOYOTA ARISTO for practical use in JAPAN.
Technical Paper

Study of Mileage-Related Formaldehyde Emission from Methanol Fueled Vehicles

1990-02-01
900705
In order to determine the main factors causing the mileage-related increase in formaldehyde emission from methanol-fueled vehicles, mileage was accumulated on three types of vehicle, each of which had a different air-fuel calibration system. From exhaust emission data obtained during and after the mileage accumulation, it was found that lean burn operation resulted in by far the highest formaldehyde emission increase. An investigation into the reason for the rise in engine-out formaldehyde emission revealed that deposits in the combustion chamber emanating from the lubricating oil promotes formaldehyde formation. Furthermore it was learnt that an increase in engine-out NOx emissions promotes partial oxidation of unburned methanol in the catalyst, leading to a significant increase in catalyst-out formaldehyde emission.
Technical Paper

The Advanced Sensor Fusion Algorithm for Pre-Crash Safety System

2007-04-16
2007-01-0402
An obstacle recognition algorithm for the Pre-Crash Safety system has been newly developed with a stereo vision system and a millimeter wave radar with additional functions. This algorithm uses the merits of both the millimeter wave radar and the stereo vision system, and has two main features. One feature utilizes the merits of the stereo vision system detection with the detection results from the millimeter wave radar allowing for a more detailed horizontal position and width of the obstacle. This enables the equipment to operate at an earlier stage according to how well the relationship between the vehicle and the obstacle is understood. Another feature fuses detection from the millimeter wave radar and the stereo vision system. This system has succeeded in enhancing the detection performance of pedestrians who have been more difficult to detect than reflective objects such as cars.
Technical Paper

Development of Crawl Control

2008-04-14
2008-01-1227
Toyota Motor Corporation has already designed and developed vehicle brake control systems for relatively low speed off-road driving, such as Downhill Assist Control, Hill-start Assist Control and Active Traction Control. Though off-road utility is improved by virtue of these systems, in specific situations actual performance still depends on driving technique since the driver is required to control the accelerator pedal. Toyota has integrated these existing systems, and developed a new driving technology for off-road driving called “Crawl Control.” Crawl Control automatically modulates brake torque and drive torque to help keep the vehicle speed constant and slow. Unskilled drivers can thereby attain improved capabilities in places where high-level driving techniques are required. This system also reduces the effort required to control the accelerator and the brake pedal. This paper presents a new control algorithm for the realization of this Crawl Control system.
Technical Paper

Study on the Potential Benefits of Plug-in Hybrid Systems

2008-04-14
2008-01-0456
There is ever increasing interest in the issues of fossil fuel depletion, global warming, due to increased atmospheric CO2, and air pollution, all of which are due in some extent to transportation, including automobiles. Hybrid Vehicles (HVs), whose performance and usage are equivalent to existing conventional vehicles, attract lots of attention and have started to come into wider use. Meanwhile, EVs have been considered by many as the best solution for the issues mentioned above. But the technical difficulty of battery energy density is an obstruction to successful implementation. Currently the Plug-in HV (PHEV), which combines the advantages of HV and EV, is being considered as one promising solution. PHEVs can be categorized into two types, according to operating modes. The first uses battery stored energy initially, only stating the internal combustion engine when the battery is depleted. This we call the All Electric Range (AER) system.
X