Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Experimental and Numerical Analysis for a Urea-SCR Catalytic Converter

2016-04-05
2016-01-0973
Urea-SCR (Selective Catalytic Reduction) systems are getting a lot of attention as the most promising NOx reduction technology for heavy-duty diesel engine exhaust. In order to promote an effective development for an optimal urea-SCR after-treatment system, it is important to clarify the decomposition behavior of the injected urea and a detailed reaction chemistry of the reactants on the catalyst surface in exhaust gases. In this paper we discuss experimental and numerical studies for the development of a numerical simulation model for the urea-SCR catalyst converter. As a first step, in order to clarify the behavior of reductants in an urea-SCR converter, two types of diagnostic technique were developed; one is for measuring the amount of NH3, and the other is for measuring the amount of total reductants including unreacted urea and iso-cyanic acid. These techniques were applied to examine the behavior of reductants at the inlet and inside the SCR converter.
Technical Paper

Numerical Study of Catalytic Reaction Mechanisms of Urea SCR

2017-03-28
2017-01-0973
Urea-SCR(selective catalytic reduction) system is widely used as a technology of NOx(Nitrogen Oxides) reduction from diesel engine exhaust gases. Emission regulations have becoming stricter all over the world, and high NOx reduction performance is necessary to meet the emission regulations. To get higher NOx reduction performance of the Urea-SCR system, it is important to understand detailed chemical reaction mechanisms of Urea-SCR catalysts. In this study, we focused on elucidation of the reaction mechanism of the Urea-SCR catalyst by numerical simulation approach. The chemical reaction models with detail chemical reactions were built for both Fe-catalyst and Cu-catalyst. Both of the catalytic reaction models can predict difference of the catalytic reaction performance between the Fe-catalyst and the Cu-catalyst. In addition, rate-determining reaction step of the Cu-catalyst was successfully identified by the numerical simulation results.
Technical Paper

Development of a Compact Adsorption Heat Pump System for Automotive Air Conditioning System

2016-04-05
2016-01-0181
In order to reduce the energy consumption of the automotive air conditioning system, adsorption heat pump (AHP) system is one of the key technologies. We have been developing compact AHP system utilizing the exhaust heat from the engine coolant system (80-100 °C), which can meet the requirements in the automotive application. However, AHP systems have not been practically used in automotive applications because of its low volumetric power density of the adsorber. The volumetric power density of the adsorber is proportional to sorption rate, packing density and latent heat. In general, the sorption rate is determined by mass transfer resistance in primary particle of an adsorbent and heat and mass transfer resistance in packed bed. In order to improve the volumetric power density of the adsorber, it is necessary to increase the production of the sorption rate and the packing density.
X