Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Application of Loop Shaping H-infinity Control to Diesel Engine Anti-Oscillation Strategy

2001-10-01
2001-01-3316
The control of fuel delivery to minimize drivetrain oscillations is a major benefit to vehicle refinement and driveability. This paper describes the application of robust H-infinity loop-shaping control to the speed-fuel control loop. A one-degree-of-freedom controller structure (feedback only) is examined and applied to a small passenger car. Using careful implementation, the control algorithm is of low order and efficient requiring only limited microprocessor resources. The robust controller gives excellent performance when operated synchronously to engine rotation, where the dynamics become speed-dependent. Alternatively it can be operated satisfactorily at a fixed sample rate, asynchronous to engine rotation. The design is found to be eminently suitable for production.
Technical Paper

Compatibility of High Performance Aluminum-Silicon Alloys with Laser Surface Modification

2002-07-09
2002-01-2014
The goal of the present work is to reduce the environmental impact of car gasoline engines by developing lightweight engine components. The use of light-weight metals such as aluminum results in substantial reductions in CO2 emissions. Traditionally aluminum alloys have been restricted to low temperature applications because of their poor mechanical properties at elevated temperature. However, novel fabrication methods such as spray forming and rapid solidification have overcome the temperature limitation. Coupled with a surface coating designed to withstand corrosion and wear at elevated temperatures, these high performance alloys may be considered to replace steel-based components in automotive engines. In this work, hypereutectic aluminum-silicon (Al-Si) alloys produced via different fabrication routes were tested for laser coating with a nickel-chromium alloy. Experimental results demonstrating the response of these alloys to laser coating are presented.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

The Effect of Thermal Cycling on the Mechanical Properties of the Macro-Interface in Squeeze Cast Composites

1994-03-01
940810
Selectively reinforced, squeeze cast automotive pistons contain a boundary between the reinforced and unreinforced regions. This boundary is known as the macro-interface. Due to the difference in CTE between the composite and unreinforced matrix, the macro-interface can be the site of residual stress formation during cooling from the casting or heat treatment temperature. Subsequent thermal exposure, particularly thermal cycling, may produce cyclic stress at this interface causing it to experience fatigue. It has been found that matrix precipitates at the macro-interface and the aging behavior of the matrix also may play a role in defining the strength of the macro-interface during thermal cycling conditions.
Technical Paper

Reproducing the Structural Intrusion of Frontal Offset Crashes in the Laboratory Sled Test Environment

1995-02-01
950643
The response and risk of injury for occupants in frontal crashes are more severe when structural deformation occurs in the vehicle interior. To reproduce this impact environment in the laboratory, a sled system capable of producing structural intrusion in the footwell region has been developed. The system couples the hydraulic decelerator of the sled to actuator pistons attached to the toepan and floorpan structure of the buck. Characterization of the footwell intrusion event is based on developing a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Preliminary sled tests with the system indicate that it is capable of simulating a complex sequence of toepan/floorpan translations and rotations.
Technical Paper

The Flow Field Inside an Automotive Torque Converter: Laser Velocimeter Measurements

1996-02-01
960721
The 3-D flow field inside an automotive torque converter was measured using laser velocimetry. For the tests, a torque converter completely machined from Plexiglas was operated at the 0.065 and 0.800 turbine/pump speed ratio, and detailed velocities were measured in 13 planes throughout the torque converter. Digital shaft encoder information was used to correlate measured velocities with the pump/turbine angular positions to generate blade-to-blade profiles, 3-D vector plots, and contour through flow plots. Results showed large flow separation regions, jet/wake flows, circulatory secondary flows, and significant flow unsteadiness in all three torque converter elements (pump, turbine, and stator). From the measured velocities, torque converter performance parameters such as mass flows, input/output torque, element incidence angles, slip factors, and vorticities were determined.
Technical Paper

Experimental Devices to Simulate Toepan and Floorpan Intrusion

1997-02-24
970574
Two sled systems capable of producing structural intrusion in the footwell region of an automobile have been developed. The first, System A, provides translational toepan intrusion using actuator pistons to drive the footwell structure of the test buck. These actuator pistons are coupled to the hydraulic decelerator of the test sled and are powered by hydraulic energy from the impact event. Resulting footwell intrusion is characterized using a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Sled tests with System A indicate that it is capable of accurately and repeatably simulating toepan/floorpan intrusion into the occupant footwell. Test results, including a comparison of lower extremity response between intrusion sled tests and no intrusion sled tests, indicate that this system is capable of repeatable, controlled structural intrusion during a sled test impact.
Technical Paper

A Pneumatic Airbag Deployment System for Experimental Testing

1997-02-24
970124
This paper examines an originally designed airbag deployment system for use in static experimental testing. It consists of a pressure vessel and valve arrangement with pneumatic and electric controls. A piston functions like a valve when operated and is activated pneumatically to release the air in the tank. Once released, the air fills the attached airbag. The leading edge velocity can be controlled by the initial pressure in the tank, which can range up to 960 kPa. Three different test configurations were studied, which resulted in leading edge deployment speeds of approximately 20 m/s, 40 m/s, and 60 m/s. In experiments using this system, seven types of airbags were tested that differed in their material, coating, and presence of a tether. Data for each series of tests is provided. High speed video and film were used to record the deployments, and a pressure transducer measured the airbag's internal pressure.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

2005-04-11
2005-01-1905
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Diesel Fuel Injection Control for Optimum Driveability

2000-03-06
2000-01-0265
Performance and refinement are key factors which influence the market acceptance of passenger cars, and consequently in the area of diesel fuel injection control there is increasing pressure for improved driveability. “Driveline shunt” is one important and problematic aspect of driveability, which is also known as “judder”, “chuggle” or “cab-nod”. It has been defined as an objectionable vehicle oscillation which takes place following a rapid throttle input or increase in engine load. This phenomenon is caused by driveline vibrations which can occur as a consequence of variations in engine torque demand. Mathematical modelling and experimentation techniques have been used to establish the behaviour of a fuel injection system, engine and vehicle driveline. Vehicle tests have been conducted in order to relate objective metrics and subjective opinion.
Technical Paper

Design and Development of Single Seat, Four Wheeled All-Terrain Vehicle for Baja Collegiate Design Series

2015-09-29
2015-01-2863
There has been a rapid increase in popularity of multipurpose All-terrain vehicles (ATV) across the globe over the past few years. SAE BAJA event gives student-community an opportunity to delve deeper into the nitty-gritty of designing a single seat, four-wheeled off road vehicle. The design and development methodology presented in this paper is useful in conceptualization of an ATV for SAE BAJA event. The vehicle is divided into various subsystems including chassis, suspension, drive train, steering, and braking system. Further these subsystems are designed and comprehensively analyzed in software like SolidWorks, ANSYS, WINGEO and MS-Excel. The 3-D model of roll cage is designed in SolidWorks and analyzed in ANSYS 9.0 for front, rear and side impact along with front and side roll-over conditions. Special case of wheel bump is also analyzed. Weight, wall thickness and bending strength of tubing used for roll cage are comprehensively studied.
X