Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Journal Article

Development of a Highly Anti-Corrosive Organic-Inorganic Hybrid Paint

2016-04-05
2016-01-0540
A highly anti-corrosive organic-inorganic hybrid paint for automotive steel parts has been developed. The inorganic component included in the paint is silicon dioxide (SiO2), which has the capability to passivate zinc. By application of the paint on a trivalent chromatetreated zinc-plated steel sheet or a trivalent chromate-treated zinc-nickel-plated steel sheet, high anti-corrosion protection can be provided to steel materials. Particularly in the case of application over a zinc-nickel-plated steel sheet, 0 mm corrosion depth after a cyclic corrosion test (CCT) of 450 cycles was demonstrated.
Technical Paper

Development of Simplified Finite Element Model for Ultra-High-Strength Steel Resistance Spot Weld Fractures

2020-04-14
2020-01-0220
This paper describes the development of a simplified fracture finite element (FE) model for resistance spot welds (RSW) of ultra-high-strength steel (UHSS) that can be incorporated into large-scale vehicle FE model. It is known that the RSW of UHSS generates two types of fracture modes: heat-affected zone (HAZ) and nugget zone fractures. Lap shear and peeling coupon tests using UHSS sheets found that the different RSW fracture modes occurred at different nugget diameters. To analyze this phenomenon, detailed simulated coupon tests were carried out using solid hexahedral elements. The analytical results revealed that RSW fractures are defined by both the application of plastic strain on the elements and the stress triaxiality state of the elements. A detailed model incorporating a new fracture criteria model recreated the different UHSS RSW fracture modes and achieved a close correlation with the coupon test results.
Technical Paper

Method of Improving Side Impact Protection Performance by Induction Hardening of Body Reinforcement Compatibility Between Safety and Weight Reduction in Body Engineering

1998-02-23
980550
A technique for induction-hardening local portions of vehicle body reinforcements press-formed of thin sheet steel has been developed, with the aim of ensuring occupant safety in a side collision. This technique for increasing the tensile strength of sheet steel was practically applied to the front floor cross member and center pillar reinforcement. Owing to this method, the weight of body reinforcements can be decreased. New induction-hardening systems have also been developed for the present technique. One is an apparatus which allows induction-hardening a part with a three-dimensionally curved surface. Another is a straightening quench technique used to retain the same dimensional accuracy as the original press-formed part.
Technical Paper

Development of Sealing Material Used in the Body Welding Shop

2007-04-16
2007-01-0418
1 The principal characteristics required of sealing materials used in the body shop have focused on their adhesion to oily steel sheets and quick curing performance. Means for attaining these characteristics have been narrowed down to a basic resin system and a curing system. Various techniques have been studied to ensure proper anti-corrosion performance at the sealer application boundaries and thin application areas. They include the addition of anti-corrosion fillers, the provision of conductivity (through electro-deposition), and the application of a micro foam film over the application boundaries. Thus, prospects for attaining the same level of anti-corrosion performance as existing materials have been achieved.
Technical Paper

The Development of Toyota Fantasy Print System

1998-09-29
982344
Recently, the demands of vehicle owners have become more diversified. This is particularly true in the paint appearance of the vehicle. Responding to these demands Toyota has developed an ink jet painting system, Toyota Fantasy Print System. This system can illustrate practically any picture which the customer desires. The system utilized a subtractive method of paint mixture which mixes or piles up these four permeable inks. The development of durable ink as well as equipment which can efficiently and effectively apply the ink onto the required contoured surface.
Technical Paper

Development of Anti Scratch Clear Coat

2008-04-14
2008-01-1461
“Anti-scratch performance” is the highest in customer's needs of paint. To achieve anti-acid and anti-scratch performance, we selected 2K-urethane because of a high degree of freedom in paint design. In addition, we have done a precise molecular design of the acrylic polyol and the isocyanate. As a result, “a highly durable, soft, fine-crosslinking paint film” was achieved, and “anti-scratch clear coat” that surpassed the current clear coats was developed.
Technical Paper

A Study of Mixed-FAME and Trace Component Effects on the Filter Blocking Propensity of FAME and FAME Blends

2010-10-25
2010-01-2116
Previous studies have investigated the impacts of biofuel usage on the performance, drivability and durability of modern diesel engines and exhaust after-treatment systems including test work with different types, concentrations and mixtures of bio fuel components. During this earlier work vehicle fuel filter blocking issues were encountered during a field trial using various types of EN 14214 compliant Fatty Acid Methyl Ester (FAME) blended into EN 590 diesel. This paper summarises a subsequent literature review that was carried out looking into potential causes of this filter blocking and further work that was then carried out to expand on the findings. From this, a laboratory study was carried out to assess the increase in fuel filter blocking tendency (FBT) when various FAMEs from mixed sources were blended into EN 590 diesel at different concentrations, including levels above those currently allowed in the European market.
Technical Paper

New Frictional Testing Method for Stamping Formability - Development of Dr. STAMP (Direct & Rapid, Surface Tribology Analyzing Method for Press) Method -

2003-10-27
2003-01-2812
Galvannealed steel sheet (GA) is very extensively used for vehicle panels. However ζ-phase (FeZn13) in GA coat causes poor stamping formability. Previously, there were no easy methods to evaluate the influence of ζ-phase on the frictional characteristics other than the X-ray diffraction method. This study will discuss the development of a new testing method: Dr. STAMP Method that is both efficient and convenient with pin-on-disc tester.
Technical Paper

Examination of Crack Growth Behavior in Induction Hardened Material under Torsional Fatigue

2011-04-12
2011-01-0198
Since wear resistance and fatigue strength are key requirements for chassis components, induction hardening is widely used to apply compressive stress for controlling crack growth. Therefore, it is crucial that the influence of defects is examined with compressive residual stress applied to parts. In this report, the relationship between crack depth and compressive residual stress is evaluated using a cylindrical specimen and a torsional fatigue test. The test results were found to be consistent with CAE simulations performed in advance. In the future, it will be necessary to make this method applicable to product design to further improve vehicle safety performance.
Technical Paper

Optimizing Transmission Loss for Lightweight Body Structures

2017-06-05
2017-01-1812
In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
Technical Paper

High Toughness Microalloyed Steels for Vital Automotive Parts

1989-02-01
890511
We developed new microalloyed steels, containing about 0.05% sulfur, which have excellent as hot-forged toughness even when forged at the temperatures of about 1300°C(2375°F). We also estimated the various properties of the new microalloy steel in the as hot-forged condition, comparing them to quench and tempered SAE1055 steel used in the front axle of a small truck. The results showed the new steel has improved yield strength, fatigue strength, absorbed impact energy and machinability over the SAE1055 steel.
Technical Paper

Development of a Mechanical Pilot Injection Device for Automotive Diesel Engines

1989-09-01
891962
It is well known that pilot injection is an effective method of reducing diesel knock noise during idling, but no actual system has as yet been commercially produced. With the objective of developing a practicable pilot injection device, simulations were conducted of various simple mechanisms in order to determine the best specifications and analyze the fuel injection characteristics. Based on these results, a chamber expansion type pilot injection device, which enables the injection pump pressure chamber volume to be increased at a given moment during the fuel compression stroke, has been developed and has been found to remarkably decrease knock noise during cold idling. An investigation into the effects of this device on output power, exhaust emissions, cold startability and durability revealed that it is eminently suitable for practical application.
Technical Paper

Solar Module Laminated Constitution for Automobiles

2016-04-05
2016-01-0351
Replacing the metal car roof with conventional solar modules results in the increase of total car weight and change of center of mass, which is not preferable for car designing. Therefore, weight reduction is required for solar modules to be equipped on vehicles. Exchanging glass to plastic for the cover plate of solar module is one of the major approaches to reduce weight; however, load bearing property, impact resistance, thermal deformation, and weatherability become new challenges. In this paper a new solar module structure that weighs as light as conventional steel car roofs, resolving these challenges is proposed.
Technical Paper

Fatigue Life Prediction Method for Laser Screw Welds in Automotive Structures

2016-04-05
2016-01-0394
This paper describes the development of a fatigue life prediction method for Laser Screw Welding (LSW). Fatigue life prediction is used to assess the durability of automotive structures in the early design stages in order to shorten the vehicle development time. The LSW technology is a spot-type joining method similar to resistance spot welding (RSW), and has been developed and applied to body-inwhite structures in recent years. LSW can join metal panels even when a clearance exists between the panels. However, as a result of this favorable clearance-allowance feature of LSW, a concave shape may occur at the nugget part of the joint. These LSW geometric features, the concavity of nuggets and the clearance between panels, are thought to affect the local stiffness behavior of the joint. Therefore, while assessing the fatigue life of LSW, it is essential to estimate the influence of these factors adequately for the representation of the local stiffness behavior of the joint.
Technical Paper

Measurement Technique of Exhaust Valve Temperature

2015-09-01
2015-01-1999
Thermal load caused by engine combustion is one of the important issues for the engines such as high-boosted downsized engines and engines with high compression ratio. In particular, it is necessary to maintain the reliability and durability of exhaust valves which are subject to the biggest thermal impact. For this reason, sodium filled hollow valves are utilized in preference to solid valves in order to decrease the exhaust valve temperature. The most common method for detecting the valve temperature is to estimate the temperature by measuring hardness on valve surface (Hardness test). However, the hardness test is only applicable to the condition up to 800°C. Therefore, this paper presents new techniques for measuring the temperature for sodium-filled valve using infrared thermography and thermocouple as an alternative hardness test. The authors also examined the valve temperatures at a variety of engine speeds and cooling of the sodium-filled valve during engine operation.
X