Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Energy Regeneration of Heavy Duty Diesel Powered Vehicles

1998-02-23
980891
The objective of this study is to improve fuel economy and reduce carbon dioxide emissions in diesel-electric hybrid automotive powertrains by developing an exhaust gas turbine generator system which utilizes exhaust gas energy from the turbocharger waste gate. The design of the exhaust gas turbine generator was based on a conventional turbocharger for a direct-injection diesel engine. Data from steady-state bench tests using air indicates about 50% of the turbine input energy can be converted to electric energy. Turbine generator output averaged 3 kW, while a maximum of about 6 kW was observed. Based on this data, we estimate that energy consumption in a vehicle could be reduced between 5% and 10%. Engine tests were conducted under both steady-state and transient conditions. These tests revealed that optimal performance occurred under high-speed, high-load conditions, typical of highway or uphill driving, and that performance at low-speed, low-loads was relatively poor.
Technical Paper

Combustion Control Method of Homogeneous Charge Diesel Engines

1998-02-23
980509
Under heavy load condition, single fuel operation with diesel fuel was studied experimentally for the homogeneous charge diesel combustion (HCDC) method. HCDC engine, in which pre-mixture was formed by fuel injected into an intake manifold and mixed with air beforehand then ignited by small amount of fuel directly injected into a cylinder, can reduce NOx and smoke simultaneously from the diesel engine. In HCDC the higher the premixed fuel ratio was, the lower the emissions were. Accordingly, it was indicated that homogeneous pre-mixture contributed to improvement of exhaust emissions. However, a diesel knocking due to uncontrolled self-ignition may occur under high premixed fuel ratio conditions in the case of operating heavy loads. Thus, the maximum amount of premixed fuel was restricted by these knocking limits.
Technical Paper

Methane and Nitrous Oxide (N20) Emission Characteristics from Automobiles

1996-02-01
960061
Exhaust gases discharged from automobiles are noticed as one of the reasons for resent increase in atmospheric methane (CH4) and nitrous oxide (N2O) concentration, which have been considered as greenhouse effect gas. In order to make an accurate estimation of methane and nitrous oxide discharged from automobiles, measurement methods of them were experimentally developed and their emissions were measured for different kinds of automobiles under various driving conditions. Then, we have tried to estimate the annual global emissions from automobiles using these measurement results and statistical data such as the number of automobiles, the total annual mileage, and the total annual fuel consumption etc. As results, their emissions from passenger vehicles which have been estimated from global number of automobiles were 477.263 t/year for methane and 313.472 t/year for nitrous oxide. These numbers are higher than what had been estimated.
Technical Paper

Continuous Measurement of Diesel Particulate Emissions by an Electrical Low-Pressure Impactor

2000-03-06
2000-01-1138
In addition to PM total matter, PM size distribution is recently receiving increased attention because of the dependency of PM size on human health effects. Thus, PM size distributions and the emission behavior under various driving patterns are becoming important in diesel particulate emissions. Electrical Low Pressure Impactor (ELPI)_is a candidate to measure continuously, not only PM mass, but also particulate size distribution. Therefore, we investigated using ELPI to measure diesel particulate mass and size distribution, together with time series behaviors under various driving patterns. This study demonstrated the feasibility of continuous measurement of PM size distribution by means of an ELPI. The typical PM size distribution curve on weight base has a peak of 0.18 micrometer. The typical PM size distribution curve on number base has a peak of 0.11 micrometer. Engine load influences these characteristics.
Technical Paper

Search for Optimizing Control Method of Homogeneous Charge Diesel Combustion

1999-03-01
1999-01-0184
As a method for reducing exhaust emissions from diesel engines, we have experimented on a homogeneous charge diesel combustion technique (HCDC) whereby a portion of fuel is supplied into the intake port to form a homogeneous premixture, this is then fed into the cylinder from the intake port before ignition of the diesel fuel, which is injected directly into the cylinder. Our results have indicated possibilities of substantially reducing both NOx and smoke emissions. If diesel fuel is premixed with air, the premixture under-goes excessively early self-ignition, making it difficult to maintain ignition timing near top dead center and hence limiting the engine operating conditions. While an important target in emission reduction is to realize stable low-emission combustion during a high-load operation, the actual operation of diesel engines mostly involves partial-load conditions.
X