Refine Your Search

Topic

Search Results

Journal Article

A Novel Hierarchical Global Chassis Control System for Distributed Electric Vehicles

2014-04-01
2014-01-0091
The current global chassis control (GCC) frequently makes use of decoupled control methods which depend on driving condition partition and simple rule-based vertical force distribution, and are insufficient to obtain optimal vehicle dynamics performance. Therefore, a novel hierarchical global chassis control system for a distributed electric vehicle (DEV), which is equipped with four wheel driving/steering and active suspension systems, is developed in this paper. The control system consists of three layers: in the upper layer, the desired forces/moments based on vehicular driving demands are determined; in the middle layer, a coordinated control method of longitudinal/lateral/vertical tire forces are proposed; in the lower layer, the driving/steering/suspension control is conducted to realize each distributed tire force.
Journal Article

Influence of Feature Lines of Vehicle Hood Styling on Headform Kinematics and Injury Evaluation in Car-to-Pedestrian Impact Simulations

2014-04-01
2014-01-0518
Vehicle hood styling has significant influence on headform kinematics in assessment tests of pedestrian impact protection performance. Pedestrian headform kinematics on vehicle front-end models with different hood styling characteristics is analyzed based on finite element modeling. More elevated feature lines near hood boundary and the following continuous hood surface towards fender will result in a different headform motion. It can lead to larger deformation space, more rotation and earlier rebound of the headform impactor, which will benefit the head impact protection performance. In addition, hood geometry characteristics such as hood angle and curvature have effects on structural stiffness. Therefore, inclusion of considerations on pedestrian head protection into the vehicle hood styling design stage may lead to a more effective and efficient engineering design process on headform impact analysis.
Journal Article

On the Effect of Friction Law in Closed-Loop Coupling Disc Brake Model

2016-04-05
2016-01-0476
Brake squeal is a complex dynamics instability issue for automobile industry. Closed-loop coupling model deals with brake squeal from a perspective of structural instability. Friction characteristics between pads and disc rotor play important roles. In this paper, a closed-loop coupling model which incorporates negative friction-velocity slope is presented. Different from other existing models where the interface nodes are coupled through assumed springs, they are connected directly in the presented model. Negative friction slope is taken into account. Relationship between nodes’ frictional forces, relative speeds and brake pressure under equilibrant sliding and vibrating states is analysed. Then repeated nodal coordinate elimination and substructures’ modal coordinate space transformation of system dynamic equation are performed. It shows that the negative friction slope leads to negative damping items in dynamic equation of system.
Journal Article

Study on Repeated-Root Modes in Substructure Modal Composition Analysis

2016-04-05
2016-01-0477
The dynamic properties of disc rotor play important role in the NVH performance of a disc brake system. Disc rotor in general is a centrosymmetric structure. It has many repeated-root modes within the interested frequency range and they may have significant influence on squeal occurrence. A pair of repeated-root modes is in nature one vibration mode. However, in current complex eigenvalue analysis model and relevant analysis methods, repeated-root modes are processed separately. This may lead to contradictory result. This paper presents methods to deal with repeated-root modes in substructure modal composition (SMC) analysis to avoid the contradiction. Through curve-fitting technique, the modal shape coefficients of repeated-root modes are expressed in an identical formula. This formula is used in SMC analysis to obtain an integrated SMC value to represent the total influence of two repeated-root modes.
Journal Article

Response Surface Generation for Kinematics and Injury Prediction in Pedestrian Impact Simulations

2013-04-08
2013-01-0216
This study concerns the generation of response surfaces for kinematics and injury prediction in pedestrian impact simulations using human body model. A 1000-case DOE (Design of Experiments) study with a Latin Hypercube sampling scheme is conducted using a finite element pedestrian human body model and a simplified parametric vehicle front-end model. The Kriging method is taken as the approach to construct global approximations to system behavior based on results calculated at various points in the design space. Using the response surface models, human lower limb kinematics and injuries, including impact posture, lateral bending angle, ligament elongation and bone fractures, can be quickly assessed when either the structural dimensions or the structural behavior of the vehicle front-end design change. This will aid in vehicle front-end design to enhance protection of pedestrian lower limbs.
Journal Article

Closed Loop Control Algorithm of Fuel Cell Output Power for a City Bus

2013-04-08
2013-01-0479
This paper studies a control algorithm for fuel cell/battery city buses. The output power of the fuel cell is controlled by a D.C. converter, and the output ports of the converter and the battery are connected in parallel to supply power for the electric motor. One way to prolong service life is to have the fuel cell system to deliver a steady-state power. However, because of fluctuations in the bus voltage and uncertainness in the D.C. converter, the output power of the fuel cell system changes drastically. A closed-loop control algorithm is necessary to eliminate the errors between the output and target power of the fuel cell system. The algorithm is composed of two parts, the feed forward one and the feedback one. Influences of the bus voltage and D.C. efficiency are compensated automatically in the feedback algorithm by using a PI algorithm. The stability and robustness of the algorithm is analyzed.
Technical Paper

Economic, Environmental and Energy Life-Cycle Assessment of Coal Conversion to Automotive Fuels in China

1998-11-30
982207
A life-cycle assessment (LCA) has been developed to help compare the economic, environmental and energy (EEE) impacts of converting coal to automotive fuels in China. This model was used to evaluate the total economic cost to the customer, the effect on the local and global environments, and the energy efficiencies for each fuel option. It provides a total accounting for each step in the life cycle process including the mining and transportation of coal, the conversion of coal to fuel, fuel distribution, all materials and manufacturing processes used to produce a vehicle, and vehicle operation over the life of the vehicle. The seven fuel scenarios evaluated in this study include methanol from coal, byproduct methanol from coal, methanol from methane, methanol from coke oven gas, gasoline from coal, electricity from coal, and petroleum to gasoline and diesel. The LCA results for all fuels were compared to gasoline as a baseline case.
Technical Paper

Dynamic Comprehensive Performance of Mufflers under Different Vehicle Running Conditions

2010-04-12
2010-01-0901
The effective matching of the exhaust mufflers and engines is an important measure to reduce the noise emission of running vehicles. Currently, the matching is based mainly on the steady state performance of engine. The muffler's influence on a vehicle's noise emission and sound quality under different running conditions is not generally considered. A comprehensive performance evaluation method is proposed to describe the muffler's influence on a commercial vehicle's noise emission, sound quality and exhaust back pressure under multiple working conditions. The weighted insertion loss and linearity coefficient were defined based on the test data of the exhaust noise under different engine loads and speeds. A comprehensive performance evaluation method was defined from the test data analysis of engine exhaust noise with different mufflers. Finally, the simulation results of the exhaust noise of a vehicle with different mufflers were compared with test data.
Technical Paper

Knocking Suppression using Stratified Stoichiometric Mixture in a DISI Engine

2010-04-12
2010-01-0597
Knocking is the main obstacle of increasing compression ratio to improve the thermal efficiency of gasoline engines. In this paper, the concept of stratified stoichiometric mixture (SSM) was proposed to suppress knocking in gasoline engines. The rich mixture near the spark plug increases the speed of the flame propagation and the lean mixture in the end gas suppresses the auto ignition. The overall air/fuel ratio keeps stoichiometric to solve the emission problem using three way catalysts (TWC). Moreover, both the rich zone and lean zone lead to soot free combustion due to homogeneous mixture. The effect on the knocking of homogeneous and stratified mixture was studied in a direct injection spark ignition (DISI) engine using numerical simulation and experimental investigation respectively.
Technical Paper

Study on Brake Squeal by Feed-In Energy Analysis

2001-03-05
2001-01-0950
Brake squeal noise is studied in this paper by feed-in energy analysis. Based on the closed-loop coupling brake model, the computation method of feed-in energy is derived for the system squeal mode. The amount of feed-in energy can indicate the degree of squeal tendency of the brake system. Feed-in energy analysis can clearly reveal the influence of some structural parameters on brake noise, such as coefficient of friction, the geometric shape and stiffness of pads, and key substructure modal shape. It also can help to analyze the structure modification to eliminate brake squeal.
Technical Paper

Study on the characteristics of driving cycles

2000-06-12
2000-05-0336
The driving cycles reflect the actual operational condition of vehicles. Based on these cycles, the energy performance of an actual Internal Combustion Engine (ICE) vehicle and that of a hypothetical Hybrid Electric Vehicle (HEV) are predicted. The reasons for different results are analyzed using the equal efficiency loops of engine and motor. These lay a foundation for selecting and determining the reasonable driving cycle to select, design and match the vehicles.
Technical Paper

Optimization of an Electric Turbo Compounding System for Gasoline Engine Exhaust Energy Recovery

2011-04-12
2011-01-0377
A large proportion (about 33%) of the fuel energy is lost through exhaust gas in a gasoline engine. Electric turbo compounding (ETC) is a promising technology for gasoline engine exhaust energy recovery. In this paper, optimization of an ETC system for turbocharged gasoline engines is carried out. The ETC system has a turbo-generator that is in parallel with the turbocharger, the flow distribution between the turbocharger and the turbo-generator is controlled. The engine exhaust energy is recovered by the turbo-generator with fixed geometry turbine (FGT) or variable nozzle turbine (VNT). The design and control of the ETC system are optimized for best recovery of engine exhaust energy at engine full load and part load operating conditions. The system performance is studied by 1D simulation methods. The gasoline engine is modeled with the GT-POWER software and the turbochargers and turbo-generators are modeled with turbo through-flow models.
Technical Paper

Substructure Modal Composition and Sensitivity Analysis based on Closed-Loop Coupling Model without Coupling Spring

2016-04-05
2016-01-1309
In this paper, analysis methods for brake squeal including substructure modal composition analysis and substructure modal parameters sensitivity analysis are presented. These methods are based on a new closed-loop coupling disc brake model, where the coupled nodal pairs in each coupling interface are connected tightly. This assumption is different from other existing models in literatures, where the interface nodes are coupled through assumed springs. Based on this new model, two analysis methods are derived: Substructure modal composition analysis indicates the contribution of modes of each substructure to the noise mode; Substructure modal parameters sensitivity analysis indicates the sensitivity of the real part of system’s eigenvalue to component’s modal frequency and shape. Finally, the presented analysis methods are applied to analyse a high frequency squeal problem of a squealing disc brake.
Technical Paper

Reducing Greenhouse Gas Emissions by Electric Vehicles in China: the Cost-Effectiveness Analysis

2016-04-05
2016-01-1285
Compared with conventional vehicles, electric vehicles (EVs) offer the benefits of replacing petroleum consumption and reducing air pollutions. However, there have been controversies over greenhouse gas (GHG) emissions of EVs from the life-cycle perspective in China’s coal-dominated power generation context. Besides, it is in doubt whether the cost-effectiveness of EVs in China exceeds other fuel-efficient vehicles considering the high prices. In this study, we compared the life-cycle GHG emissions of existing vehicle models in the market. Afterwards, a cost model is established to compare the total costs of vehicles. Finally, the cost-effectiveness of different vehicle types are compared. It is concluded that the GHG emission intensity of EVs is lower than reference and hybrid vehicles currently and is expected to decrease with the improvement of the power grid.
Technical Paper

An Explanation of the In-Wheel Motor Drive System’s Vibration at Low Velocity Using Motor-Wheel Frequency Characteristics

2016-04-05
2016-01-1673
The in-wheel-motor (IWM) drive system has some interesting features, such as the vibration of this structure at low velocity. An explanation of this phenomenon is given in this paper by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. Firstly, a frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. Furthermore, an equation between the resonance velocity with the parameters of the drive system is obtained by combining the resonance frequency of this drive system with the fundamental frequency of the motor. The correctness of the equation is demonstrated through simulations and experimental tests on different road surfaces. The impact of different parameters on the vibration can be explained by this equation, which can give the engineer some instructions to design a control method to avoid this feature.
Technical Paper

‘Wheel Slip-Based’ Evaluation of Road Friction Potential for Distributed Electric Vehicle

2016-04-05
2016-01-1667
As a typical parameter of the road-vehicle interface, the road friction potential acts an important factor that governs the vehicle motion states under certain maneuvering input, which makes the prior knowledge of maximum road friction capacity crucial to the vehicle stability control systems. Since the direct measure of the road friction potential is expensive for vehicle active safety system, the evaluation of this variable by cost effective method is becoming a hot issue all these years. A ‘wheel slip based’ maximum road friction coefficient estimation method based on a modified Dugoff tire model for distributed drive electric vehicles is proposed in this paper. It aims to evaluate the road friction potential with vehicle and wheel dynamics analyzing by using standard sensors equipped on production vehicle, and fully take the advantage of distributed EV that the wheel drive torque and rolling speed can be obtained accurately.
Technical Paper

Flame Kernel Growth and Propagation in an Optical Direct Injection Engine Using Laser Ignition

2017-10-08
2017-01-2243
The demand for more efficient and clean engines have prompted the research and development of new engine technologies. Automotive engines expected to run with leaner mixtures and higher compression ratios. Lean burn is effective to increase fuel economy whilst reducing emissions but unreliable ignition of the lean mixtures by the conventional spark plug is one of the problems which causes concerns to the engine designers. Laser ignition is a promising technology and holds many benefits over the spark ignition because it can extend the ignitability of lean mixtures with flexibility of the ignition location and absence of electrode degradation for improved engine performance with lean burn. In this study, high-speed photography is used to investigate the flame kernel growth and propagation in an optical direct injection engine using laser ignition by an Nd:YAG laser.
Technical Paper

An Experimental Study Using Spark-Assisted Stratified Compression Ignition (SSCI) Hybrid Combustion Mode for Engine Particle Number (PN) Reduction in a High Compression Ratio Gasoline Engine

2016-04-05
2016-01-0758
Particle Number (PN) have already been a big issue for developing high efficiency internal combustion engines (ICEs). In this study, controlled spark-assisted stratified compression ignition (SSCI) with moderate end-gas auto-ignition was used for reducing PN in a high compression ratio gasoline direct injection (GDI) engine. Under wide open throttle (WOT) and Maximum Brake Torque timing (MBT) condition, high external cooled exhaust gas recirculation (EGR) was filled in the cylinder, while two-stage direct injection was used to form desired stoichiometric but stratified mixture. SSCI combustion mode exhibits two-stage heat release, where the first stage is associated with flame propagation induced by spark ignition and the second stage is the result of moderate end-gas auto-ignition without pressure oscillation at the middle or late stage of the combustion process.
Technical Paper

Optimal Feedback Control with in-Cylinder Pressure Sensor under Engine Start Conditions

2011-04-12
2011-01-1422
In-cylinder pressure sensor, which provides the means for precise combustion control to achieve improved fuel economy, lower emissions, higher comfort, additional diagnostic functions etc., is becoming a necessity in future diesel engines, especially for chemical-kinetics dominated PCCI (Premixed Charge Compression Ignition) or LTC (Low Temperature Combustion) engines. In this paper, new control strategy is investigated to utilize in-cylinder pressure information into engine start process, in order to guarantee the success of engine start and in the meantime prevent penalty of fuel economy or pollutant emissions due to excessive fuel injection. An engine start acceleration model is established to analyze the engine start process. “In-cylinder Combustion Analysis Tool” (i-CAT), is used to acquire and process the in-cylinder pressure data and deliver the combustion indices to ECU (Engine Control Unit). Feedback control is accomplished in ECU based on this information.
Technical Paper

Prototype of Distributed Electro-Hydraulic Braking System and its Fail-Safe Control Strategy

2013-09-30
2013-01-2066
Prototype of a brake-by-wire (BBW) system named Distributed Electro-hydraulic Braking System (DEHB) has been developed. As a BBW system, DEHB is suitable to be used in electric vehicles (EV) and hybrid electric vehicles (HEV). Comparing to the ‘dry’ type distributed BBW systems such as Electro-mechanical Braking System (EMB) or Electric Wedge Brake (EWB), the ‘wet’ feature of DEHB brings benefits to system cost, installation, performance and reliability. In this paper, prototype of the DEHB was described. Based on its ‘wet’ feature, a new fail-safe control for DEHB was proposed. Two types of DEHB architectures that can perform the proposed fail-safe control were described. Superiority of the proposed fail-safe control and architectures for DEHB were examined and verified through simulations and HIL experiments, which helps DEHB to reach a high level of safety and reliability with reduced cost on electro/electronic redundancy.
X