Refine Your Search

Search Results

Viewing 1 to 7 of 7
Journal Article

Aerodynamics of a Pickup Truck: Combined CFD and Experimental Study

2009-04-20
2009-01-1167
This paper describes a computational and experimental effort to document the detailed flow field around a pickup truck. The major objective was to benchmark several different computational approaches through a series of validation simulations performed at Clemson University (CU) and overseen by those performing the experiments at the GM R&D Center. Consequently, no experimental results were shared until after the simulations were completed. This flow represented an excellent test case for turbulence modeling capabilities developed at CU. Computationally, three different turbulence models were employed. One steady simulation used the realizable k-ε model. The second approach was an unsteady RANS simulation, which included a turbulence closure model developed in-house. This simulation captured the unsteady shear layer rollup and breakdown over the front of the hood that was expected and seen in the experiments but unattainable with other off-the-shelf turbulence models.
Technical Paper

Comparison Between the Conventional Body-Fitted and the Lattice Boltzmann CFD Methods for the Flow around a Generic Pickup Truck

2008-04-14
2008-01-0323
Computational Fluid Dynamics (CFD) has gained popularity as a tool for many airflow situations including road vehicle aerodynamics. This trend, to bring CFD to bear on vehicle aerodynamic design issues, is appropriate and timely in view of the increasing competitive and regulative pressures being faced by the automotive industry. For a large portion of the engineering community, the primary source of CFD capabilities is through the purchase of commercial CFD codes. This paper summarizes the results of a series of benchmark external aerodynamic simulations that were carried out for a generic pickup truck model using two commercial CFD codes, namely Fluent and the PowerFLOW. For direct comparisons the computations and the experiments were performed for the same model (vehicle) geometry and under similar flow conditions.
Technical Paper

Numerical Investigation of Road Vehicle Aerodynamics Using the Immersed Boundary RANS Approach

2005-04-11
2005-01-0546
This paper describes the computational results of the flow field around two vehicle geometries using the Immersed Boundary (IB) technique in conjunction with a steady RANS CFD solver. The IB approach allows the computation of the flow around objects without requiring the grid lines to be aligned with the body surfaces. In the IB approach instead of specifying body boundary conditions, a body force is introduced in the governing equations to model the effect of the presence of an object on the flow. This approach reduces the time necessary for meshing and allows utilization of more efficient and fast CFD solvers. The simulations are carried out for an SUV and a pickup truck models at a Reynolds number of 8×105. Cartesian meshes (non-uniform) with local grid refinement are used to increase the resolution close to the boundaries. The simulation results are compared with the existing measurements in terms of surface pressures, velocity profiles, and drag coefficients.
Technical Paper

Light Duty Automotive Fuel Economy …Trends through 1981

1981-02-01
810386
EPA new-model fuel economy figures are presented for passenger vehicles and light duty trucks (those with GVW ratings up to 8500 lbs). The 1981 models are emphasized, with some comparisons to prior years included. Reader familiarity with the EPA tests, data bases, and analytical methods is assumed. Principal two-way analyses include comparisons of domestic vs. import, gasoline vs. Diesel, and Federal (49-state) vs. California vehicles. Sales fractions for a number of vehicle and engine emission control design features are included. The principal finding is that increased use of newer vehicle and emission control technologies in 1981 has accompanied significant fuel economy gains in spite of the tougher 1981 emission standards.
Technical Paper

Light Duty Automotive Fuel Economy … Trends through 1982

1982-02-01
820300
EPA Fuel economy figures are presented for model year 1982 cars and light duty trucks. Comparisons with the MPG figures of prior years are included. Sales penetrations of various vehicle, engine, and emission control design features are given, and domestic cars' MPG characteristics are compared to that of imports', gasoline vehicle MPG is compared to Diesel MPG, and 49-states MPG is compared to California MPG. Usage of newer vehicle technologies is continuing to increase, leading to continued growth in fuel economy capability in spite of stringent emission standards.
Technical Paper

Passenger Car Fuel Economy… Trends Through 1984

1984-02-01
840499
This the twelfth in a series of Papers on trends in EPA fuel economy, concentrates as usual on the current Model Year (1984). Final Corporate Average Fuel Economy (CAFE) production volumes and MPG figures have been used to update the data bases through the 1982 Model Year. This paper is different from earlier papers in four ways: 1) manufacturer-supplied production forecasts have been adjusted for both model years 1983 and 1984. 2) sales weighted MPG values at the nameplate level of aggregation are presented. 3) much of the analysis is stratified at the Domestic/European/Japanese manufacturer level, and 4) fuel economy analysis for Light Duty Trucks is not included. Conclusions are presented on the trends in fuel economy of the fleet as a whole and for various classes of vehicles.
Technical Paper

Light Duty Automotive Fuel Economy … Trends thru 1985

1985-05-01
850550
This, the thirteenth in a series of papers on trends in EPA fuel economy, covers both passenger cars and light trucks and concentrates on the current model year, 1985. It differs from previous papers in two ways: 1) Model years 1975, 1980 and 1985 are highlighted, with the model years in between these rarely discussed; 2) The progress of the industry, as a whole, in improving fuel economy since 1975 is emphasized, and individual manufacturer data are de-emphasized. Conclusions are presented on the trends in fuel economy of the car and light truck fleets; the Domestic, European and Japanese market sectors; and various vehicle classes.
X