Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Effects of EGR Dilution and Fuels on Spark Plug Temperatures in Gasoline Engines

2013-04-08
2013-01-1632
The addition of exhaust gas recirculation (EGR) has demonstrated the potential to significantly improve engine efficiency by allowing high CR operation due to a reduction in knock tendency, heat transfer, and pumping losses. In addition, EGR also reduces the engine-out emission of nitrogen oxides, particulates, and carbon monoxide while further improving efficiency at stoichiometric air/fuel ratios. However, improvements in efficiency through enhanced combustion phasing at high compression ratios can result in a significant increase in cylinder pressure. As cylinder pressure and temperature are both important parameters for estimating the durability requirements of the engine - in effect specifying the material and engineering required for the head and block - the impact of EGR on surface temperatures, when combined with the cylinder pressure data, will provide an important understanding of the design requirements for future cylinder heads.
Technical Paper

Experimental Investigation of the Scavenging Performance of a Two-Stroke Opposed-Piston Diesel Tank Engine

2004-03-08
2004-01-1591
The Tank-Automotive RD&E Center periodically conducts foreign materiel evaluations to assess the current state of the art for ground vehicle technologies. The Propulsion Laboratory is conducting performance evaluations of an opposed-piston two-stroke diesel tank engine produced by the Kharkov Design Bureau in Ukraine. A key factor in the performance of all two-stroke engines is the scavenging process, which determines how well the cylinders are emptied of exhaust and filled with fresh air. The overall air flow rate is not sufficient to determine this, as a significant amount of air may be lost through the exhaust ports during the scavenging process. The inlet tracer gas method was employed to provide the additional data required. With methane as the tracer, it produced reasonable and consistent data over a wide range of engine speeds and loads. The inlet tracer gas method was found to be an effective tool for measuring the scavenging performance of a running two-stroke diesel engine.
Technical Paper

API CI-4: The First Oil Category for Diesel Engines Using Cooled Exhaust Gas Recirculation

2002-05-06
2002-01-1673
This oil category was driven by two new cooled exhaust gas recirculation (EGR) engine tests operating with 15% EGR, with used oil soot levels at the end of the test ranging from 6 to 9%. These tests are the Mack T-10 and Cummins M11 EGR, which address ring, cylinder liner, bearing, and valve train wear; filter plugging, and sludge. In addition to these two new EGR tests, there is a Caterpillar single-cylinder test without EGR which measures piston deposits and oil consumption control using an articulated piston. This test is called the Caterpillar 1R and is included in the existing Global DHD-1 specification. In total, the API CI-4 category includes eight fired-engine tests and seven bench tests covering all the engine oil parameters. The new bench tests include a seal compatibility test for fresh oils and a low temperature pumpability test for used oils containing 5% soot. This paper provides a review of the all the tests, matrix results, and limits for this new oil category.
X