Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Fuel Effects on Reactivity Controlled Compression Ignition (RCCI) Combustion at Low Load

2011-04-12
2011-01-0361
Reactivity Controlled Compression Ignition combustion (RCCI) has been demonstrated at mid to high loads [1, 2, 3, 4, 5, 6] as a method to operate an internal combustion engine that produces low NOx and low PM emissions with high thermal efficiency. The current study investigates RCCI engine operation at loads of 2 and 4.5 bar gross IMEP at engine speeds between 800 and 1700 rev/min. This load range was selected to cover the range from the previous work of 6 bar gIMEP down to an off-idle load at 2 bar. The fueling strategy for the low load investigation consisted of in-cylinder fuel blending using port-fuel-injection of gasoline and early cycle, direct-injection of either diesel fuel or gasoline doped with 3.5% by volume 2-EHN (2-ethylhexyl nitrate). At these loads, engine operating conditions such as inlet air temperature, port fuel percentage, and engine speed were varied to investigate their effect on combustion.
Journal Article

Effect of Piston Bowl Geometry on Dual Fuel Reactivity Controlled Compression Ignition (RCCI) in a Light-Duty Engine Operated with Gasoline/Diesel and Methanol/Diesel

2013-04-08
2013-01-0264
A single-cylinder light-duty diesel engine was used to investigate dual fuel reactivity controlled compression ignition (RCCI) operated with two different fuel combinations: gasoline/diesel fuel and methanol/diesel fuel. The engine was operated over a range of conditions, from 1500 to 2300 rpm and 3.5 to 17 bar gross IMEP. Using the stock re-entrant piston bowl geometry, both fuel combinations were able to achieve low NOx and PM emissions with a peak gross indicated efficiency of 48%. However, at light load conditions both gasoline and methanol yielded poorer combustion efficiencies. Previous studies have shown that the high-levels of piston induced mixing that are created by the stock piston are not required, and in fact are detrimental due to increased heat transfer losses, for premixed combustion. Thus a modified piston featuring a shallow, flat piston bowl with nearly no squish land was also investigated.
Journal Article

A Surrogate Fuel Formulation Approach for Real Transportation Fuels with Application to Multi-Dimensional Engine Simulations

2014-04-01
2014-01-1464
Real transportation fuels, such as gasoline and diesel, are mixtures of thousands of different hydrocarbons. For multidimensional engine applications, numerical simulations of combustion of real fuels with all of the hydrocarbon species included exceeds present computational capabilities. Consequently, surrogate fuel models are normally utilized. A good surrogate fuel model should approximate the essential physical and chemical properties of the real fuel. In this work, we present a novel methodology for the formulation of surrogate fuel models based on local optimization and sensitivity analysis technologies. Within the proposed approach, several important fuel properties are considered. Under the physical properties, we focus on volatility, density, lower heating value (LHV), and viscosity, while the chemical properties relate to the chemical composition, hydrogen to carbon (H/C) ratio, and ignition behavior. An error tolerance is assigned to each property for convergence checking.
Journal Article

Effect of Cetane Improvers on Gasoline, Ethanol, and Methanol Reactivity and the Implications for RCCI Combustion

2013-04-08
2013-01-1678
The focus of the present study was to characterize the fuel reactivity of high octane number fuels (i.e., low fuel reactivity), namely gasoline, ethanol, and methanol when mixed with cetane improvers under lean, premixed combustion conditions. Two commercially available cetane improvers, 2-ethylhexyl nitrate and di-tert-butyl peroxide, were used in the study. First, blends of the primary reference fuels iso-octane and n-heptane were port injected under fixed operating conditions. The resulting combustion phasings were used to generate effective PRF number maps. Then, blends of the aforementioned base fuels and cetane improvers were tested under the same lean premixed conditions as the PRF blends. Based on the combustion phasing results of the base fuel and cetane improver mixture, the effective PRF number, or octane number, could be determined.
Technical Paper

Reactivity Controlled Compression Ignition (RCCI) Heavy-Duty Engine Operation at Mid-and High-Loads with Conventional and Alternative Fuels

2011-04-12
2011-01-0363
Engine experiments and multi-dimensional modeling were used to explore Reactivity Controlled Compression Ignition (RCCI) to realize highly-efficient combustion with near zero levels of NOx and PM. In-cylinder fuel blending using port-fuel-injection of a low reactivity fuel and optimized direct-injection of higher reactivity fuels was used to control combustion phasing and duration. In addition to injection and operating parameters, the study explored the effect of fuel properties by considering both gasoline-diesel dual-fuel operation, ethanol (E85)-diesel dual fuel operation, and a single fuel gasoline-gasoline+DTBP (di-tert butyl peroxide cetane improver). Remarkably, high gross indicated thermal efficiencies were achieved, reaching 59%, 56%, and 57% for E85-diesel, gasoline-diesel, and gasoline-gasoline+DTBP respectively.
Technical Paper

Extension of the Lower Load Limit of Gasoline Compression Ignition with 87 AKI Gasoline by Injection Timing and Pressure

2014-04-01
2014-01-1302
Previous work has demonstrated the capabilities of gasoline compression ignition to achieve engine loads as high as 19.5 bar BMEP with a production multi-cylinder diesel engine using gasoline with an anti-knock index (AKI) of 87. In the current study, the low load limit of the engine was investigated using the same engine hardware configurations and 87 AKI fuel that was used to achieve 19.5 bar BMEP. Single injection, “minimum fueling” style injection timing and injection pressure sweeps (where fuel injection quantity was reduced at each engine operating condition until the coefficient of variance of indicated mean effective pressure rose to 3%) found that the 87 AKI test fuel could run under stable combustion conditions down to a load of 1.5 bar BMEP at an injection timing of −30 degrees after top dead center (°aTDC) with reduced injection pressure, but still without the use of intake air heating or uncooled EGR.
Technical Paper

Effects of Temporal and Spatial Distributions of Ignition and Combustion on Thermal Efficiency and Combustion Noise in DICI Engine

2014-04-01
2014-01-1248
The effects of the temporal and spatial distributions of ignition timings of combustion zones on combustion noise in a Direct Injection Compression Ignition (DICI) engine were studied using experimental tests and numerical simulations. The experiments were performed with different fuel injection strategies on a heavy-duty diesel engine. Cylinder pressure was measured with the sampling intervals of 0.1°CA in order to resolve noise components. The simulations were performed using the KIVA-3V code with detailed chemistry to analyze the in-cylinder ignition and combustion processes. The experimental results show that optimal sequential ignition and spatial distribution of combustion zones can be realized by adopting a two-stage injection strategy in which the proportion of the pilot injection fuel and the timings of the injections can be used to control the combustion process, thus resulting in simultaneously higher thermal efficiency and lower noise emissions.
Technical Paper

Computational Investigation of Low Load Operation in a Light-Duty Gasoline Direct Injection Compression Ignition [GDICI] Engine Using Single-Injection Strategy

2014-04-01
2014-01-1297
The use of gasoline in a compression ignition engine has been a research focus lately due to the ability of gasoline to provide more premixing, resulting in controlled emissions of the nitrogen oxides [NOx] and particulate matter. The present study assesses the reactivity of 93 RON [87AKI] gasoline in a GM 1.9L 4-cylinder diesel engine, to extend the low load limit. A single injection strategy was used in available experiments where the injection timing was varied from −42 to −9 deg ATDC, with a step-size of 3 deg. The minimum fueling level was defined in the experiments such that the coefficient of variance [COV] of indicated mean effective pressure [IMEP] was less than 3%. The study revealed that injection at −27 deg ATDC allowed a minimum load of 2 bar BMEP. Also, advancement in the start of injection [SOI] timing in the experiments caused an earlier CA50, which became retarded with further advancement in SOI timing.
X