Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Physiological Effects of A Mechanical Counter Pressure Glove

2001-07-09
2001-01-2165
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960’s. MCP provides an alternative approach to the conventional full pressure suit that bears some potential advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. Preliminary results are presented from glovebox testing with an existing MCP glove. The data indicates that properly applied mechanical counter pressure greatly reduces the effect of low-pressure exposure, which makes MCP a viable technology for spacesuit gloves.
Technical Paper

Application of the Oppenheim Correlation (OPC) for Evaluation of Heat Losses from Combustion in IC-Engine

2000-03-06
2000-01-0202
The Oppenheim Correlation (OPC) is a new empirical algorithm, which allows a simple estimate of heat losses to the wall during the combustion in IC-engine. In present paper the results of different applications of OPC will be shown. Even if there are still several needs and ideas for further research it can be stated, that the OPC is a promising possibility of modeling the wall heat losses and due to its simplicity it has to be recommended to the engine community. The OPC can be used not only for didactics purposes, but also for quick simulation of wall heat losses and eventually for the on-line regulation of the cooling system.
X