Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Experimental and Numerical Analyses of Direct and Port Water Injection in a Turbocharged Spark-Ignition Engine

2021-09-05
2021-24-0035
Water injection represents a promising tool to improve performance of spark-ignition engines. It allows reducing in-cylinder temperature, preventing knock risks. Optimizing the spark advance, water injection allows obtaining an increase of both efficiency and power output, particularly at medium and high loads. Water can be injected into the intake port or directly into the combustion chamber. In this paper, the authors investigated the effects of both direct and port water injection in a downsized PFI spark-ignition engine at high load operation. Different water-to-fuel ratios have been analyzed for both configurations. For the experimental analysis, low-pressure water injectors have been installed in the intake ports of the engine under study, upstream of the fuel injectors. Experimental tests have been carried out at various operating points. Furthermore, engine operation with port water injection has been simulated by means of the AVL Fire 3-D code.
Technical Paper

Ethanol in a Light-Duty Dual Fuel Compression Ignition Engine: 3-D Analysis of the Combustion Process

2021-09-05
2021-24-0036
A wider use of biofuels in internal combustion engines could reduce the emissions of pollutants and greenhouse gases from the transport sector. In particular, due to stringent emission regulatory programs, compression ignition engine requires interventions aimed at reducing their polluting emissions. Ethanol, a low carbon fuel generally produced from biomass, is a promising alternative fuel applicable in compression ignition engines to reduce CO2 and soot emissions. In this paper, the application of a dual fuel diesel-ethanol configuration in a light-duty compression ignition engine has been numerically investigated. Ethanol is injected into the intake port, while diesel fuel is directly injected into the combustion chamber of the analyzed engine. CFD simulations have been carried out by means of the AVL Fire 3-D code. The operation at given engine load and speed has been simulated considering different diesel injection timings.
X