Refine Your Search

Topic

Search Results

Technical Paper

Development of a New Ejector Performance Map for Design of an Automotive Air Conditioning System

2020-04-14
2020-01-1244
Ejector as a work recovery device offers potential for developing energy efficient heating and cooling systems based on vapor compression technology. For applications like automobile air conditioning, the operating conditions vary significantly which can lead to considerable performance degradation when the system is operated in off-design conditions. Therefore, system designing warrants development of accurate ejector performance models for a wide range of operating conditions. In this paper, a novel methodology for ejector performance maps is proposed using ejector efficiency as performance parameter and volumetric entrainment ratio as characterization parameter. The proposed performance map is developed after conducting experiments to find appropriate performance representation where ejector driven flow can be characterized using ejector motive flow. The developed performance map can predict ejector pressure lift within an accuracy of 20% using an iterative solver.
Journal Article

A Semi-Detailed Chemical Kinetic Mechanism of Acetone-Butanol-Ethanol (ABE) and Diesel Blends for Combustion Simulations

2016-04-05
2016-01-0583
With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. To seek for an optimized volumetric ratio for ABE-diesel blends, the previous work in our team has experimentally investigated and analyzed the combustion features of ABE-diesel blends with different volumetric ratio (A: B: E: 6:3:1; 3:6:1; 0:10:0, vol. %) in a constant volume chamber. It was found that an increased amount of acetone would lead to a significant advancement of combustion phasing whereas butanol would compensate the advancing effect. Both spray dynamic and chemistry reaction dynamic are of great importance in explaining the unique combustion characteristic of ABE-diesel blend. In this study, a semi-detailed chemical mechanism is constructed and used to model ABE-diesel spray combustion in a constant volume chamber.
Technical Paper

Combustion Characteristics of Acetone, Butanol, and Ethanol (ABE) Blended with Diesel in a Compression-Ignition Engine

2016-04-05
2016-01-0884
Acetone-Butanol-Ethanol (ABE) is an intermediate product in the ABE fermentation process for producing bio-butanol. As an additive for diesel, it has been shown to improve spray evaporation, improve fuel atomization, enhance air-fuel mixing, and enhance combustion as a whole. The typical compositions of ABE are in a volumetric ratio of 3:6:1 or 6:3:1. From previous studies done in a constant volume chamber, it was observed that the presence of additional acetone in the blend caused advancement in the combustion phasing, but too much acetone content led to an increase in soot emission during combustion. The objective of this research was to investigate the combustion of these mixtures in a diesel engine. The experiments were conducted in an AVL 5402 single-cylinder diesel engine at different speeds and different loads to study component effects on the various engine conditions. The fuels tested in these experiments were D100, ABE(3:6:1)10, ABE(3:6:1)20, ABE(6:3:1)10, and ABE(6:3:1)20.
Technical Paper

An Optical Investigation of Multiple Diesel Injections in CNG/Diesel Dual-Fuel Combustion in a Light Duty Optical Diesel Engine

2017-03-28
2017-01-0755
Dual-fuel combustion combining a premixed charge of compressed natural gas (CNG) and a pilot injection of diesel fuel offer the potential to reduce diesel fuel consumption and drastically reduce soot emissions. In this study, dual-fuel combustion using methane ignited with a pilot injection of No. 2 diesel fuel, was studied in a single cylinder diesel engine with optical access. Experiments were performed at a CNG substitution rate of 70% CNG (based on energy) over a wide range of equivalence ratios of the premixed charge, as well as different diesel injection strategies (single and double injection). A color high-speed camera was used in order to identify and distinguish between lean-premixed methane combustion and diffusion combustion in dual-fuel combustion. The effect of multiple diesel injections is also investigated optically as a means to enhance flame propagation towards the center of the combustion chamber.
Technical Paper

NOx Reduction in Compression-Ignition Engine by Inverted Ignition Phi-Sensitivity

2017-03-28
2017-01-0749
A new approach of NOx reduction in the compression-ignition engine is introduced in this work. The previous research has shown that during the combustion stage, the high temperature ignition tends to occur early at the near-stoichiometric region where the combustion temperature is high and majority of NOx is formed; Therefore, it is desirable to burn the leaner region first and then the near-stoichiometric region, which inhibits the temperature rise of the near-stoichiometric region and consequently suppresses the formation of NOx. Such inverted ignition sequence requires mixture with inverted phi-sensitivity. Fuel selection is performed based on the criteria of strong ignition T-sensitivity, negligible negative temperature coefficient (NTC) behavior, and large heat of vaporization (HoV).
Technical Paper

Comparison Study on Combustion and Emission Characteristics of ABE/IBE-Diesel Blends in a Common-Rreail Diesel Engine

2017-10-08
2017-01-2321
Bio-butanol has been considered as a promising alternative fuel for internal combustion engines due to its advantageous physicochemical properties. However, the further development of bio-butanol is inhibited by its high recovery cost and low production efficiency. Hence, the goal of this study is to evaluate two upstream products from different fermentation processes of bio-butanol, namely acetone-butanol-ethanol (ABE) and isopropanol-butanol-ethanol (IBE), as alternative fuels for diesel. The experimental comparison is conducted on a single-cylinder and common-rail diesel engine under various main injection timings (MIT) and equivalent engine load (EEL) conditions. The experimental results show that ABE and IBE significantly affect the combustion phasing. The start of combustion (SOC) is retarded when ABE and IBE are mixed with diesel. Furthermore, the ABE/IBE-diesel blends are more sensitive to the changes in MIT compared with that of pure diesel.
Technical Paper

Effect of Acetone-Gasoline Blend Ratio on Combustion and Emissions Characteristics in a Spark-Ignition Engine

2017-03-28
2017-01-0870
Due to the increasing consumption of fossil fuels, alternative fuels in internal combustion engines have attracted a lot of attention in recent years. Ethanol is the most common alternative fuel used in spark ignition (SI) engines due to its advantages of biodegradability, positively impacting emissions reduction as well as octane number improvement. Meanwhile, acetone is well-known as one of the industrial waste solvents for synthetic fibers and most plastic materials. In comparison to ethanol, acetone has a number of more desirable properties for being a viable alternative fuel such as its higher energy density, heating value and volatility.
Technical Paper

Experimental Investigation and Analysis of Combustion Process in a Diesel Engine Fueled with Acetone-Butanol-Ethanol/ Diesel Blends

2016-04-05
2016-01-0737
The performance and emission of an AVL 5402 single-cylinder engine fueled with acetone-butanol-ethanol (ABE) / diesel blends were experimentally investigated at various load conditions and injection timings. The fuels tested in the experiments were ABE10 (10% ABE, 90% diesel), ABE20 and diesel as baseline. Thermodynamics analyses of pressure traces acquired in experiments were performed to show the impact of ABE concentration to the overall combustion characteristics of the fuel mixtures. Cumulative heat release analysis showed that ABE mixtures generally retarded the overall combustion phasing, ignition delays of ABE-containing fuels were significantly extended, however, combustion rate during CA10∼CA50 were accelerated at different extent. Pressure rise rate of ABE-containing fuels further implicated that the premixed combustion were more dominant than that of diesel. Polytropic indices of both expansion and compression strokes were calculated from p-V diagram.
Technical Paper

Numerical Study and Parameter Optimization on a Diesel - Natural Gas Dual Fuel Engine

2016-04-05
2016-01-0769
This work presents a comprehensive computational study of diesel - natural gas (NG) dual fuel engine. A complete computational model is developed for the operation of a diesel - NG dual fuel engine modified from an AVL 5402 single cylinder diesel test engine. The model is based on the KIVA-3V program and includes customized sub-models. The model is validated against test cell measurements of both pure diesel and dual fuel operation. The effects of NG on ignition and combustion in dual fuel operation are analyzed in detail. Zero-dimensional computations with a diesel surrogate reaction mechanism are conducted to discover the effects of NG on ignition and combustion and to reveal the fundamental chemical mechanisms behind such effects. Backed by the detailed theoretical analysis, the engine operation parameters are optimized with genetic algorithm (GA) for the dual fuel operation of the modified AVL 5402 test engine.
Technical Paper

An Experimental Study of the Combustion, Performance and Emission Characteristics of a CI Engine under Diesel-1-Butanol/CNG Dual Fuel Operation Mode

2016-04-05
2016-01-0788
In order to comply with the stringent emission regulations, many researchers have been focusing on diesel-compressed natural gas (CNG) dual fuel operation in compression ignition (CI) engines. The diesel-CNG dual fuel operation mode has the potential to reduce both the soot and NOx emissions; however, the thermal efficiency is generally lower than that of the pure diesel operation, especially under the low and medium load conditions. The current experimental work investigates the potential of using diesel-1-butanol blends as the pilot fuel to improve the engine performance and emissions. Fuel blends of B0 (pure diesel), B10 (90% diesel and 10% 1-butanol by volume) and B20 (80% diesel and 20% 1-butanol) with 70% CNG substitution were compared based on an equivalent input energy at an engine speed of 1200 RPM. The results indicated that the diesel-1-butanol pilot fuel can lead to a more homogeneous mixture due to the longer ignition delay.
Technical Paper

Experimental Study on Performance and Emission of Acetone-Ethanol and Gasoline Blends in a PFI Spark Ignition Engine

2016-04-05
2016-01-0833
To face the challenges of fossil fuel shortage and air pollution problems, there is growing interest in the potential usage of alternative fuels such as bio-ethanol and bio-butanol in internal combustion engines. The literature shows that the acetone in the Acetone-Butanol-Ethanol (ABE) blends plays an important part in improving the combustion performance and emissions, owing to its higher volatility. In order to study the effects of acetone addition into commercial gasoline, this study focuses on the differences in combustion, performance and emission characteristics of a port-injection spark-ignition engine fueled with pure gasoline (G100), ethanol-containing gasoline (E30) and acetone-ethanol-gasoline blends (AE30 at A:E volumetric ratio of 3:1). The tests were conducted at 1200RPM with the default calibration (for gasoline), at 3 bar and 5 bar BMEP under various equivalence ratios.
Technical Paper

A Numerical Study on the Effects of Hot EGR on the Operation of Natural Gas Engine Ignited by Diesel-Butanol Blends

2017-03-28
2017-01-0760
Butanol, which is a renewable biofuel, has been regarded as a promising alternative fuel for internal combustion engines. When blended with diesel and applied to pilot ignited natural gas engines, butanol has the capability to achieve lower emissions without sacrifice on thermal efficiency. However, high blend ratio of butanol is limited by its longer ignition delay caused by the higher latent heat and higher octane number, which restricts the improvement of emission characteristics. In this paper, the potential of increasing butanol blend ratio by adding hot exhaust gas recirculation (EGR) is investigated. 3D CFD model based on a detailed kinetic mechanism was built and validated by experimental results of natural gas engine ignited by diesel/butanol blends. The effects of hot EGR is then revealed by the simulation results of the combustion process, heat release traces and also the emissions under different diesel/butanol blend ratios.
Technical Paper

Evaluation of the SIMON Tractor-Semitrailer Model for Steady State and Transient Handling

2006-10-31
2006-01-3479
This research compares the responses of a vehicle modeled in the 3D vehicle simulation program SIMON in the HVE simulation operating system against instrumented responses of a 3-axle tractor, 2-axle semi-trailer combination. The instrumented tests were previously described in SAE 2001-01-0139 and SAE 2003-01-1324 as part of a continuous research effort in the area of vehicle dynamics undertaken at the Vehicle Research and Test Center (VRTC). The vehicle inertial and mechanical parameters were measured at the University of Michigan Transportation Research Institute (UMTRI). The tire data was provided by Smithers Scientific Services, Inc. and UMTRI. The series of tests discussed herein compares the modeled and instrumented vehicle responses during quasi-steady state, steady state and transient handling maneuvers, producing lateral accelerations ranging nominally from 0.05 to 0.5 G's.
Technical Paper

Evaluation of Advanced Steering Control with Computer Simulation

1993-09-01
932383
Using neural networks, an algorithm has been developed to steer a wheel loader vehicle. Mathematical functions have been used in the past in an attempt to model a human in their operation of many types of vehicles. Since such functions can typically only be derived for situations in which the problem domain is thoroughly understood, research continues in an effort to develop a complete “operator model”. Neural Network algorithms were utilized in an attempt to determine the feasibility of accurately modeling the operator of a wheel loader construction vehicle. These algorithms were also used to determine how the control of different vehicle functions might be automated on a wheel loader.
Technical Paper

Machine Vision System for Quantifying Engine Valve Deposits

1993-10-01
932807
Inlet valve deposits in gasoline engines have a significant effect on engine operation with particular reference to cold starting and driveability. Present methods of quantifying these deposits by weighing them or rating them with the aid of a visual rating scale are recognized as not being reliable indices of the detrimental effect of these deposits. A valve deposit quantification system was developed that relied on the use of machine vision. Algorithms were formulated to track the silhouetted edge profile of a backlit valve from which a valve volume was determined. The valve deposit volume was calculated as the difference in volume between the valve in its clean and coked states. The system was able to detect a minimum coke deposit level of 0.06g at the 95% confidence limit, the accuracy being based on the correlation between the volume as determined by the vision system and the mass of the deposit.
Technical Paper

Mechanical Design and Control of the Pendubot

1995-04-01
951199
In this paper we demonstrate our work to date on our underactuated two link robot called the Pendubot. First we will overview the Pendubot's design, discussing the components of the linkage and the interface to the PC making up the controller. Parameter identification of the Pendubot is accomplished both by solid modeling methods and energy equation least squares techniques. With the identified parameters, mathematical models are developed to facilitate controller design. The goal of the control is to swing the Pendubot up and balance it about various equilibrium configurations. Two control algorithms are used for this task. Partial feedback linearization techniques are used to design the swing up control. The balancing control is then designed by linearizing the dynamic equations about the desired equilibrium point and using LQR or pole placement techniques to design a stabilizing controller.
Journal Article

Visualization Study of the Relationship between the Orientation of Tube and the Flow Regimes Near the Expansion Valve

2020-04-14
2020-01-1256
Several types of noise exist in automobiles. The flow-induced noise in the expansion device can be very disturbing since the expansion device is located near the occupants. In many studies, the flow-induced noise is found to be mitigated when the orientation of the tube is changed. However, no study explores the reason why flow-induced noise changes when the orientation of the tube is changed. The flow-induced noise varies along with the flow regimes near the expansion devices. In this paper, an experimental based research is used to study how the tube orientation changes the flow regimes under the same operating conditions. A pumped R134a system with transparent tubes (1/4-inch ID) is used to visualize the flow regimes near the manual expansion valve. The transparent tube is a continuous connection of horizontal tubes, 45° inclined tubes, and vertical tubes.
Technical Paper

Yield Mapping with Digital Aerial Color Infrared (CIR) Images

1999-09-14
1999-01-2847
Yield potential was predicted and mapped for three corn fields in Central Illinois, using digital aerial color infrared images. Three methods, namely statistical (regression) modeling, genetic algorithm optimization and artificial neural networks, were used for developing yield models. Two image resolutions of 3 and 6 m/pixel were used for modeling. All the models were trained using July 31 image and tested using images from July 2 and August 31, all from 1998. Among the three models, artificial neural networks gave best performance, with a prediction error less than 30%. The statistical model resulted in prediction errors in the range of 23 to 54%. The lower resolution images resulted in better prediction accuracy compared to resolutions higher than or equal to the yield resolution. Images after pollination resulted in better accuracy compared to images before pollination.
Technical Paper

The High Mounted Brake Lamp - The 4% Solution

1999-03-01
1999-01-0089
The paper reviews some of the underpinnings of the research that was done that led to adoption of the high mounted brake lamp. The expected reduction in rearend collisions of 50%, attributable to the lamp, has not been realized. Most recently, a reduction of 4% was reported. This large difference between the predicted effectiveness of the safety device with its actual effect is disturbing. The paper attempts to show the reasons for the low effectiveness which include a lack of evidence for the high-mounting location, overriding an SAE standard on the intensity of high-mounted rear signal lamps and no valid theory of driver performance.
Technical Paper

Implementation of Reinforcement Learning on Air Source Heat Pump Defrost Control for Full Electric Vehicles

2018-04-03
2018-01-1193
Air source heat pumps as the heating system for full electric vehicles are drawing more and more attention in recent years. Despite the high energy efficiency, frost accumulation on the heat pump evaporator is one of the major challenges associated with air source heat pumps. The evaporator needs to be actively defrosted periodically and heat pump heating will be interrupted during defrosting process. Proper defrost control is needed to obtain high average heat pump energy efficiency. In this paper, a new method for generating air source heat pump defrost control policy using reinforcement learning is introduced. This model-free method has several advantages. It can automatically generate optimal defrost control policy instead of requiring manually determination of the control policy parameters and logics.
X