Refine Your Search

Topic

Search Results

Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

2018-04-03
2018-01-0067
This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Real-Time Modeling of Liquid Cooling Networks in Vehicle Thermal Management Systems

2008-04-14
2008-01-0386
This paper describes a ‘toolbox’ for modeling liquid cooling system networks within vehicle thermal management systems. Components which can be represented include pumps, coolant lines, control valves, heat sources and heat sinks, liquid-to-air and liquid-to-refrigerant heat exchangers, and expansion tanks. Network definition is accomplished through a graphical user interface, allowing system architecture to be easily modified. The elements of the toolbox are physically based, so that the models can be applied before hardware is procured. The component library was coded directly into MATLAB / SIMULINK and is intended for control system development, hardware-in-the-loop (HIL) simulation, and as a system emulator for on-board diagnostics and controls purposes. For HIL simulation and on-board diagnostics and controls, it is imperative that the model run in real-time.
Technical Paper

Smart Icing Systems for Aircraft Icing Safety

2003-06-16
2003-01-2100
Aircraft incidents and accidents in icing are often the result of degradation in performance and control. However, current ice sensors measure the amount of ice and not the effect on performance and control. No processed aircraft performance degradation information is available to the pilot. In this paper research is reported on a system to estimate aircraft performance and control changes due to ice, then use this information to automatically operate ice protection systems, provide aircraft envelope protection and, if icing is severe, adapt the flight controls. Key to such a safety system would be he proper communication to, and coordination with, the flight crew. This paper reviews the basic system concept, as well as the research conducted in three critical areas; aerodynamics and flight mechanics, aircraft control and identification, and human factors.
Technical Paper

Iced-Airfoil and Wing Aerodynamics

2003-06-16
2003-01-2098
Past research on airfoil and wing aerodynamics in icing are reviewed. This review emphasizes the periods after the 1978 NASA Lewis workshop that initiated the modern icing research program at NASA and the current period after the 1994 ATR accident where aerodynamics research has been more aircraft safety focused. Research pre-1978 is also briefly reviewed. Following this review, our current knowledge of iced airfoil aerodynamics is presented from a flowfield-physics perspective. This section identifies four classes of ice accretions: roughness, rime ice, horn ice, and spanwise ridge ice. In these sections the key flowfield features such as flowfield separation and reattachment are reviewed and how these contribute to the known aerodynamic effects of these ice shapes. Finally Reynolds number and Mach number effects on iced-airfoil aerodynamics are briefly summarized.
Technical Paper

Feasibility of Modifying an Existing Semi-Trailer Air Suspension Into an Anti-Rollover System

2001-11-12
2001-01-2733
This paper examines the feasibility of modifying an existing semi-trailer air suspension system to function as an anti-rollover system in addition to its normal suspension operation. The semi-trailer model used is a dynamic, two-dimensional system. The anti-rollover system controller is formulated using projective control theory. All other factors being equal, simulations show that use of the modified suspension system decreases the weight shift when the semi-trailer undergoes lateral acceleration. By decreasing weight shift, the modified suspension system decreases the possibility of rollover.
Technical Paper

Comparison of Linear Roll Dynamics Properties for Various Vehicle Configurations

1992-02-01
920053
The ability to categorize, compare and segregate the roll dynamical behavior of various vehicles from one another is a subject of considerable research interest. A number of comparison paradigms have been developed (static stability index, roll couple methods, etc.), but all suffer from lack of robustness: results developed on the basis of a particular comparison metric are often not able to be generalized across vehicle lines and types, etc., or they simply do not segregate vehicles at all. In addition, most models do not describe vehicle dynamics in sufficient detail, and some contain no dynamics at all (e.g., static stability index = t/2h). In the present work, static stability index, a two-degree-of-freedom roll model and a three-degree-of-freedom roll and handling model were used to locate eigenvalues for a sample of 43 vehicles consisting of (1) passenger cars, (2) light trucks, (3) sport/utility vehicles and (4) minivans.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Performance Characteristics of a Mobile Heat Pump System at Low Ambient Temperature

2018-04-03
2018-01-0076
The demand for mobile heat pump systems increases with the growing popularity of electric vehicles. One big challenge of such systems using low pressure refrigerant is the substantial drop of heating capacity at low ambient temperature conditions, when heat is most needed. The low suction density associated with low operating pressure in the evaporator is the major reason for the capacity drop. In extremely low ambient temperature, compressor speed may need to be regulated in order to prevent suction pressure going below atmospheric pressure, hence further reducing heat pumping capability. Other factors like pressure drop induced temperature glide and refrigerant maldistribution in the outdoor evaporator also weakens the system ability to absorb heat from ambient air. This paper presents detailed and in-depth analysis of the performance and limiting factors on low ambient temperature operation of a mobile heat pump system using refrigerant R1234yf.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

2018-04-03
2018-01-0287
An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

An Energy Approach to Nonlinear Analysis of Roll Bars

1993-09-01
932377
Roll bars are currently a primary source of operator protection for recreational vehicles, for certain lawn and garden tractors and for small agricultural tractors. In this paper we describe a family of nonlinear models to predict the large deflection response of a roll bar due to yielding of the material. This yielding permits the structure to absorb energy. The stress-strain relationship employs a power law model. Subsequent calculation of the complementary energy stored in the structure and application of Castigliano's second theorem yield the deflection at the point of loading. To demonstrate the feasibility of this energy method in the simulation of testing of roll bars, we present numerical results for the side, vertical, and fore-aft loading cases. Results include the load-deflection response for each load case as well as the strain energy stored in the roll bar as it deforms.
Technical Paper

Neural Networks in Engineering Diagnostics

1994-04-01
941116
Neural networks are massively parallel computational models for knowledge representation and information processing. The capabilities of neural networks, namely learning, noise tolerance, adaptivity, and parallel structure make them good candidates for application to a wide range of engineering problems including diagnostics problems. The general approach in developing neural network based diagnostic methods is described through a case study. The development of an acoustic wayside train inspection system using neural networks is described. The study is aimed at developing a neural network based method for detection defective wheels from acoustic measurements. The actual signals recorded when a train passes a wayside station are used to develop a neural network based wheel defect detector and to study its performance. Signal averaging and scoring techniques are developed to improve the performance of the constructed neural inspection system.
Technical Paper

Determining the Value of Vehicle Attributes Using a PC Based Tool

1997-02-24
970763
Product engineers and product planners are routinely faced with trade-off decisions involving the cost of adding a product feature or modifying an existing feature versus its added value to the customer. The purpose of this paper is to assess the use of a personal computer (PC) for surveying respondents' willingness to pay (WTP) for four options - two-tone color, 4x4 drive, sporty trim package, and extended cab -- available on the base 1997 Ford F-150 truck. The results show that the respondents' stated WTP reflected the value of the options as determined from their prices and fraction of sales.
Technical Paper

Analytical Descriptions of Service Loading Suitable for Fatigue Analysis

1997-04-08
971535
Service loading histories have the same general character for an individual route and the magnitudes vary from driver to driver. Both the magnitude and character of the loading history change from route to route and a linear scaling of one loading history does not characterize the variability of usage over a wide range of operating conditions. In this paper a technique for measuring and extrapolating cumulative exceedance diagrams to quantify the distribution of service loading in a vehicle is described. Monte Carlo simulations are coupled with the local stress strain approach for fatigue to obtain distributions of service loading. Fatigue life estimates based on the original loading histories are compared to those obtained from statistical descriptions of exceedance diagrams.
Technical Paper

Safety Concerns in Automatic Control of Heavy-Duty Articulated Vehicles

2004-10-26
2004-01-2717
Control system design is one of the most critical issues for implementation of intelligent vehicle systems. Wide ranged fundamental research has been undertaken in this area and the safety issues of the fully automated vehicles are clearly recognized. Study of vehicle performance constrains is essential for a good understanding of this problem. This paper discusses safety issues of heavy-duty vehicles under automatic steering control. It focuses on the analysis of the effect of tire force saturation. Vehicle handling characteristics are also analyzed to improve understanding of the truck dynamics and control tasks. A simple differential brake control is formulated to show its effect of on reducing trailer swing.
Technical Paper

Using R744 (CO2) to Cool an Up-Armored M1114 HMMWV

2005-05-10
2005-01-2024
The US Army uses a light tactical High-Mobility Multi-Purpose Wheeled Vehicle (HMMWV) which, due to the amount of armor added, requires air conditioning to keep its occupants comfortable. The current system uses R134a in a dual evaporator, remote-mounted condenser, engine-driven compressor system. This vehicle has been adapted to use an environmentally friendly refrigerant (carbon dioxide) to provide performance, efficiency, comfort and logistical benefits to the Army. The unusual thermal heat management issues and the fact that the vehicle is required to operate under extreme ambient conditions have made the project extremely challenging. This paper is a continuation of work presented at the SAE Alternate Refrigerants Symposium held in Phoenix last June [1].
Technical Paper

Continuous Multicomponent Fuel Film Vaporization Model for Multidimensional Engine Modeling

2005-04-11
2005-01-0209
A multicomponent fuel film vaporization model using continuous thermodynamics is developed for multidimensional spray and wall film modeling. The vaporization rate is evaluated using the turbulent boundary-layer assumption and a quasi-steady approximation. Third-order polynomials are used to model the fuel composition profiles and the temperature within the liquid phase in order to predict accurate surface properties that are important for evaluating the mass and moment vaporization rates and heat flux. By this approach, the governing equations for the film are reduced to a set of ordinary differential equations and thus offer a significant reduction in computational cost while maintaining adequate accuracy compared to solving the governing equations for the film directly.
Technical Paper

Estimating the Expected Effectiveness of Enhanced Ground Proximity Warning Systems in Reducing Controlled Flight Into Terrain by Aircraft Operating under Part-135

2000-04-11
2000-01-2105
In order to reduce “Controlled Flight Into Terrain” (CFIT) accidents the FAA proposed, in 1998, the regulation that Enhanced Ground Proximity Warning Systems (EGPWS) should be installed in all turbine powered aircraft with 6 or more seats for passengers, operating under Federal Aviation Regulation Part-135 (commuter and charter operations). We analyzed all Part-135 crashes of this type using NTSB aviation accident data from 1983 to 1998. There were 15 crashes involving CFIT. We asked 26 experienced pilots to examine the brief narratives of the crashes and to estimate the probability that had the aircraft been equipped with EGPWS, the crews would have avoided the crashes. Based on the ratings, the median probability that Part 135 crashes would be avoided using EGPWS was 59%. We describe the nature of the crashes, the human factors involved and the reasons why the enhanced terrain warning is only partly effective.
Technical Paper

Multicomponent Liquid and Vapor Fuel Distribution Measurements in the Cylinder of a Port-Injected, Spark-Ignition Engine

2000-03-06
2000-01-0243
A 2.5L, V-6, port-injected, spark-ignition engine was modified for optical access by separating the head from the block and installing a Bowditch extended piston with a fused-silica top and a fused-silica liner in one of the cylinders. Two heads were employed in the study. One produced swirl and permitted modulation of the swirl level, and another produced a tumbling flow in the cylinder. Planar laser-induced exciplex fluorescence, which allows the simultaneous, but separate, imaging of liquid and vapor fuel, was extended to capture components of different volatilities in a model fuel designed to simulate the distillation curve of a typical gasoline. The exciplex fluorescence technique was calibrated in a separate cell where careful control of mixture composition, temperature and pressure was possible. The results show that large-scale motion induced during intake is critical for good mixing during the intake and compression strokes.
Technical Paper

A Prototype Computer Based Test System to Test Commercial Vehicle Air Brake Systems: Application and Test Results

1999-11-15
1999-01-3782
This paper describes a practical and efficient approach for determining complete transient, as well as steady state response of tractor-trailer air brake systems by recording pushrod displacement and air brake service line pressure as a function to time. The test hardware utilizes easy to fabricate “clip on” transducers to measure pushrod stroke length. Data acquisition is via LABVIEW‚. All transducers are easy to temporarily affix to any tractor- trailer and require no alteration to the vehicle. A complete system check takes less time than manually measuring pushrod stroke as required under FMCSA. This system with one treadle application and release gives digital timing and displacement history of all brakes. Useful information includes: application and release profiles (pushrod velocity), shoe compliance upon seating and crack pressure release points for both tractor and trailer relay valves.
Technical Paper

Dynamics and Roll Stability of a Loaded Class 8 Tractor-Livestock Semi-Trailer

1999-11-15
1999-01-3732
The transporting of live cattle involves the use of Class 8 tractors and livestock semi-trailers for transportation from farms and feedlots to processing plants. This travel may include unimproved roads, local streets, two lane highways, as well as interstate highways. Typically, cattle are compartmentalized in a “double deck” fashion as it provides utility and comports with size and weight limits for commercial Class 8 vehicles. Concern has been expressed for the effect of cattle movement upon the dynamic performance of the loaded Class 8 tractor-livestock trailer assembly. Loading guidelines exist for cattle that attempt to prevent injury or debilitation during transit, and literature exists on the orientation and some kinematics of loaded cattle. Considerable literature exists on the effect of liquid slosh in tankers and swinging beef carcasses suspended from hooks in refrigerated van trailers on the dynamic response and roll stability of those vehicles.
X