Refine Your Search

Topic

Search Results

Journal Article

Flow Visualization and Experimental Measurement of Compressor Oil Separator

2018-04-03
2018-01-0067
This article presents basic separation mechanisms with coalescing/impinging separators studied as the add-on to current popular centrifugal designs. The coalescence and impingement of oil on wire mesh and wave-plates are visualized and tested to investigate the impact of geometry and flow conditions on oil separation efficiency. Re-entrainment phenomenon is explained based on the mass balance. Oil mist flow at the swashplate reciprocating compressor discharge is quantified by video processing method to provide detailed information of the oil droplets. The physics behind oil separator is illustrated by visualization and measurement in this study, which gives useful guidelines for oil separator design and operation. The flow visualization shows the details of oil passing through different oil separation structures. Videos are quantified to provide information like droplet size distribution and liquid volume fraction.
Technical Paper

Modeling of an Integrated Internal Heat Exchanger and Accumulator in R744 Mobile Air-Conditioning Applications

2020-04-14
2020-01-0153
Carbon dioxide (CO2 or R744) is a promising next-generation refrigerant for mobile air-conditioning applications (MAC), which has the advantages of good heating performance in cold climates and environmental-friendly properties. This paper presents a simulation model of an integrated internal heat exchanger (IHX) and accumulator (Acc) using the finite volume method. The results are validated by a group of experimental data collected with different transcritical R744 mobile air-conditioner and heat pump (MHP) systems, and the error was within ±10%. The impacts of refrigerant mass flow rate and operating temperatures on the heat transfer rate of the IHX, improvement on refrigeration capacity and the liquid level in the Acc were studied. Results show that the net benefits of IHX are significant in AC mode, while it helps preventing flooding of the compressor in MHP mode.
Technical Paper

An Enhanced Computer-Based Process Simulation Model for the Cylinder Boring Process

1991-04-01
910957
This paper discusses an advanced computer-based process simulation model to predict cutting forces and surface error (also referred to as the lack of cylindricity) for the cylinder boring process. The model takes into consideration several enhanced features including dual and multiple-cylinder boring, back-boring, boring in the presence of windows/cavities, etc.. The model makes use of a Finite Element product model and the cutting force process model to generate a surface error profile at any axial level in the cylinder bore. A design of experiment approach is employed to study the influence of various process variables on bore surface error. The enhanced process simulation model may be used as a valuable tool in enhancing the simultaneous engineering of products and manufacturing processes.
Technical Paper

A Computer Simulation of Backhoe Type Excavators

1991-09-01
911838
This paper describes the simulation model of a backhoe excavator. The model uses a prescribed motion cycle and the objective of the program is to determine the power requirements for each of the cylinders as well as the total engine power requirement. Most computer simulations are developed by expressing the differential equations of motion for the system being studied. The known force inputs to the system are applied and the time response of the system is then obtained by numerically integrating the governing differential equations. This paper on the other hand develops the reverse of this. Utilizing a prescribed geometry and trajectory cycle for a linkage system as the input, the program solves for the types of force inputs that are required to achieve that trajectory. With the time dependence of the trajectory known, the total power required and the power required of each cylinder is also evaluated. A typical excavator linkage is shown in Fig. 1.
Technical Paper

Modeling Stochastic Performance and Random Failure

2007-07-09
2007-01-3027
High costs and extreme risks prevent the life testing of NASA hardware. These unavoidable limitations prevent the determination of sound reliability bounds for NASA hardware; thus the true risk assumed in future missions is unclear. A simulation infrastructure for determining these risks is developed in a configurable format here. Positive preliminary results in preparation for validation testing are reported. A stochastic filter simulates non-deterministic output from the various unit processes. A maintenance and repair module has been implemented with several levels of complexity. Two life testing approaches have been proposed for use in future model validation.
Technical Paper

Adaptive Lift Control for a Camless Electrohydraulic Valvetrain

1998-02-23
981029
Camless actuation offers programmable flexibility in controlling engine valve events. However, a full range of engine benefits will only be available, if the actuation system can control lift profile characteristics within a particular lift event. Control of the peak value of valve lift is a first step in controlling the profile. The paper presents an adaptive feedback control of valve lift for a springless electrohydraulic valvetrain. The adaptive control maintains peak value of lift in presence of variations in engine speed, hydraulic fluid temperature and manufacturing variability of valve assemblies. The control design includes a reduced-order model of the system dynamics. Experimental results show dynamic behavior under various operating and environmental conditions and demonstrate advantages of adaptive control over the non-adaptive type.
Technical Paper

Model to Predict Hydraulic Pump Requirements for an Off-Road Vehicle

1990-09-01
901622
This paper describes and discusses a computer model that can be used to predict the hydraulic pump requirements of an excavator necessary to meet the specified productivity levels for a given set of design conditions. The model predicts the hydraulic cylinder flow rates, pressures, and power necessary to sustain a given work cycle. The study compares the results from a simulation of the excavator with actual test data obtained from a test vehicle taken during a typical work cycle.
Technical Paper

Developing Flow Map for Two-Phase R134a after Expansion Device

2008-04-14
2008-01-0736
This paper presents a mapping of developing adiabatic two-phase R134a flow directly after the expansion valve until the flow is “fully developed” in a 15.3mm inner diameter pipe. Flow characteristics of separation distance, flow type in the homogenous region, void fraction as a function of tube length, and fully developed flow region void fraction and regime were quantified and described.
Technical Paper

An Experimental and Analytical Study of the Fatigue Life of Weldments with Longitudinal Attachments

2001-03-05
2001-01-0085
Both the experimental results and the analytical predictions of this study confirm that the poor fatigue performance of weldments with longitudinal attachments is due to poor weld quality which in turn leads to either a cold-lap or a very small weld toe radius. as well as to the combination of a very high 3-D stress concentration, and very high tensile residual stresses. Consequently, a specially designed stress-concentration-reducing part termed “stress diffuser” incorporated in the wrap-around welds at the ends of the longitudinal attachments increased the fatigue strength of longitudinal attachments to equal that of transverse attachments but only when cold-laps were eliminated. The fatigue life predictions made using the a two-stage Initiation-Propagation (IP) Model were in good agreement with the experimental results. Procedures for correcting for the curved shape of the crack path are investigated.
Technical Paper

Development of a Programmable E/H Valve with a Hybrid Control Algorithm

2002-03-19
2002-01-1463
This paper presents a programmable E/H control valve consisting of five individually proportional flow control valves. With a hybrid control algorithm, this valve has programmable valve characteristics, such as adjustable valve deadband and flow control gain, and programmable valve functions, such as different center functions. System analyses and experimental evaluations indicate that this programmable valve is capable of replacing conventional E/H control valves in practical applications.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Application of Intermediate Vapor Bypass to Mobile Heat Pump System: Extending Operating Range to Lower Ambient Temperature with Low Pressure Low GWP Fluid

2018-04-03
2018-01-0071
With market share of electric vehicles continue to grow, there is an increasing demand of mobile heat pump for cabin climate control, as it has much higher energy efficiency when compared to electric heating and helps to cut drive range reduction. One big challenge of heat pump systems is that their heating capacities drop significantly when operating at very low ambient temperature, especially for those with low pressure refrigerants. This paper presents a way to improve low ambient temperature heating performance by using intermediate vapor bypass with the outdoor heat exchanger, which works as an evaporator in heat pump mode. The experimental results show a 35% increase of heating capacity at −20 °C ambient with the improved system as compared to the baseline, and heating performance factor also slightly increased when the system is working at higher ambient temperature to reach the same heating capacity as the baseline.
Technical Paper

Performance Characteristics of a Mobile Heat Pump System at Low Ambient Temperature

2018-04-03
2018-01-0076
The demand for mobile heat pump systems increases with the growing popularity of electric vehicles. One big challenge of such systems using low pressure refrigerant is the substantial drop of heating capacity at low ambient temperature conditions, when heat is most needed. The low suction density associated with low operating pressure in the evaporator is the major reason for the capacity drop. In extremely low ambient temperature, compressor speed may need to be regulated in order to prevent suction pressure going below atmospheric pressure, hence further reducing heat pumping capability. Other factors like pressure drop induced temperature glide and refrigerant maldistribution in the outdoor evaporator also weakens the system ability to absorb heat from ambient air. This paper presents detailed and in-depth analysis of the performance and limiting factors on low ambient temperature operation of a mobile heat pump system using refrigerant R1234yf.
Technical Paper

Modeling of Quasi-1D Multi-Component Fuel Droplet Vaporization using Discrete Approach with Experimental Validation

2018-04-03
2018-01-0287
An efficient multi-component fuel droplet vaporization model has been developed in this work using discrete approach. The precise modeling of droplet vaporization process is divided into two parts: vapor-phase and liquid-phase sub-models. Temporal evolution of flow inside the droplet is considered to describe the transient behavior introduced by the slow diffusion process. In order to account for the internal circulation motion, surface regression and finite diffusion without actually resolving the spatial governing equations within the liquid phase, a set of ordinary differential equations is applied to describe the evolution of the non-uniform distributions of universal diffusional variables, i.e. temperature and species mass fraction. The differences between the droplet surface and bulk mean states are modeled by constructing a quasi-1D frame; the effect of the internal circulations is taken into consideration by using the effective diffusivity rather than physical diffusivity.
Technical Paper

Development and Validation of a Model for Predicting Hand Prehensile Movements

2006-07-04
2006-01-2329
A prediction model for hand prehensile movements was developed and validated. The model is based on a new approach that blends forward dynamics and a simple parametric control scheme. In the development phase, model parameters were first estimated using a set of hand grasping movement data, and then statistically analyzed. In the validation phase, the model was applied to novel conditions created by varying the subject group and size of the object grasped. The model performance was evaluated by the prediction errors under various novel conditions as compared to the benchmark values with no extrapolation. Analyses of the model parameters led to insights into human movement production and control. The resulting model also offers computational simplicity and efficiency, a much desired attribute for digital applications.
Technical Paper

An Interactive Program for the Simulation of Roll Bar Testing

1993-09-01
932378
ROPS-TEST is a newly developed, interactive, graphics program that may be used to simulate testing of roll bars. Cross-sections that it currently supports include solid rectangular, rectangular tubing, and circular tubing. ROPS-TEST can be used to simulate testing for crush, rear and side loading. Output from ROPS-TEST includes load-deflection and strain energy-deflection plots. ROPS-TEST does not replace actual testing of prototype roll bars. Rather it serves as a design tool to select the best design options for a particular application prior to actual testing of the prototype roll bars.
Technical Paper

A Field Information System for SSCM

1993-09-01
932422
Site-Specific Crop Management (SSCM) involves use of automated seeders and chemical applicators to make spatially-variable applications to agricultural fields. Soil productivity is spatially variable and thus, SSCM provides an opportunity to reduce total applications of seed and fertilizer without reducing crop yields. Also, more complete crop use of fertilizers with SSCM could reduce the potential for environmental contamination. A key element in SSCM is a Field Information System (FIS) for preparing application maps to control application rates.
Technical Paper

Finite Element Approach to Landfill Compaction

1993-04-01
931171
Environmental concerns have obstructed development of new landfill sites making it essential to efficiently use currently available space. Finite element methods are evaluated for predicting densification by compactors with the intent of eventually optimizing vehicle design with respect to compaction. A geometrically non-linear, plane strain, quasistatic analysis is used to capture the effects of a single rigid wheel. Future work will include multiple wheels and successive passes, three-dimensional simulations, and realistic material characterization.
Technical Paper

Neural Networks in Engineering Diagnostics

1994-04-01
941116
Neural networks are massively parallel computational models for knowledge representation and information processing. The capabilities of neural networks, namely learning, noise tolerance, adaptivity, and parallel structure make them good candidates for application to a wide range of engineering problems including diagnostics problems. The general approach in developing neural network based diagnostic methods is described through a case study. The development of an acoustic wayside train inspection system using neural networks is described. The study is aimed at developing a neural network based method for detection defective wheels from acoustic measurements. The actual signals recorded when a train passes a wayside station are used to develop a neural network based wheel defect detector and to study its performance. Signal averaging and scoring techniques are developed to improve the performance of the constructed neural inspection system.
Technical Paper

Analysis of Residual Stresses and Cyclic Deformation for Induction Hardened Components

1995-02-01
950707
Induction hardening of mild steel components often results in significant improvements in the static and cyclic load capability, with comparatively small increases in cost. Members subjected primarily to torsional loading are a relevant subset of the broad range of induction hardened components. Due to the variation of material properties and residual stresses, failures are “initiated” at the traditional geometric locations predicted for homogeneous materials and also at subsurface sites. The introduction of shear based fatigue parameters has necessitated the consideration of the residual stress as a three dimensional quantity, especially when analyzing subsurface failures. Not considering the tensoral nature of the residual stress can lead to serious errors when estimating fatigue life, and for larger magnitude loadings, the residual stress field may relax.
X