Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Feasibility of Modifying an Existing Semi-Trailer Air Suspension Into an Anti-Rollover System

2001-11-12
2001-01-2733
This paper examines the feasibility of modifying an existing semi-trailer air suspension system to function as an anti-rollover system in addition to its normal suspension operation. The semi-trailer model used is a dynamic, two-dimensional system. The anti-rollover system controller is formulated using projective control theory. All other factors being equal, simulations show that use of the modified suspension system decreases the weight shift when the semi-trailer undergoes lateral acceleration. By decreasing weight shift, the modified suspension system decreases the possibility of rollover.
Technical Paper

Comparison of Linear Roll Dynamics Properties for Various Vehicle Configurations

1992-02-01
920053
The ability to categorize, compare and segregate the roll dynamical behavior of various vehicles from one another is a subject of considerable research interest. A number of comparison paradigms have been developed (static stability index, roll couple methods, etc.), but all suffer from lack of robustness: results developed on the basis of a particular comparison metric are often not able to be generalized across vehicle lines and types, etc., or they simply do not segregate vehicles at all. In addition, most models do not describe vehicle dynamics in sufficient detail, and some contain no dynamics at all (e.g., static stability index = t/2h). In the present work, static stability index, a two-degree-of-freedom roll model and a three-degree-of-freedom roll and handling model were used to locate eigenvalues for a sample of 43 vehicles consisting of (1) passenger cars, (2) light trucks, (3) sport/utility vehicles and (4) minivans.
Technical Paper

Examining the Trade-Off Between Automobile Acceleration Performance and Fuel Economy

1996-02-01
960004
A method for making value tradeoff decisions between fuel economy and acceleration performance is demonstrated. Attribute value as defined by the S-Model Theory of Quality [1,2] is measured for the attributes of fuel economy and acceleration performance through a vehicle driving clinic. Willingness-to-pay values are found for the attributes at several different levels. The willingness-to-pay values are then used to refine the empirical and economic value curves previously determined for those attributes.
Technical Paper

Determining the Value of Vehicle Attributes Using a PC Based Tool

1997-02-24
970763
Product engineers and product planners are routinely faced with trade-off decisions involving the cost of adding a product feature or modifying an existing feature versus its added value to the customer. The purpose of this paper is to assess the use of a personal computer (PC) for surveying respondents' willingness to pay (WTP) for four options - two-tone color, 4x4 drive, sporty trim package, and extended cab -- available on the base 1997 Ford F-150 truck. The results show that the respondents' stated WTP reflected the value of the options as determined from their prices and fraction of sales.
Technical Paper

Safety Concerns in Automatic Control of Heavy-Duty Articulated Vehicles

2004-10-26
2004-01-2717
Control system design is one of the most critical issues for implementation of intelligent vehicle systems. Wide ranged fundamental research has been undertaken in this area and the safety issues of the fully automated vehicles are clearly recognized. Study of vehicle performance constrains is essential for a good understanding of this problem. This paper discusses safety issues of heavy-duty vehicles under automatic steering control. It focuses on the analysis of the effect of tire force saturation. Vehicle handling characteristics are also analyzed to improve understanding of the truck dynamics and control tasks. A simple differential brake control is formulated to show its effect of on reducing trailer swing.
Technical Paper

Estimating the Expected Effectiveness of Enhanced Ground Proximity Warning Systems in Reducing Controlled Flight Into Terrain by Aircraft Operating under Part-135

2000-04-11
2000-01-2105
In order to reduce “Controlled Flight Into Terrain” (CFIT) accidents the FAA proposed, in 1998, the regulation that Enhanced Ground Proximity Warning Systems (EGPWS) should be installed in all turbine powered aircraft with 6 or more seats for passengers, operating under Federal Aviation Regulation Part-135 (commuter and charter operations). We analyzed all Part-135 crashes of this type using NTSB aviation accident data from 1983 to 1998. There were 15 crashes involving CFIT. We asked 26 experienced pilots to examine the brief narratives of the crashes and to estimate the probability that had the aircraft been equipped with EGPWS, the crews would have avoided the crashes. Based on the ratings, the median probability that Part 135 crashes would be avoided using EGPWS was 59%. We describe the nature of the crashes, the human factors involved and the reasons why the enhanced terrain warning is only partly effective.
Technical Paper

Macroscopic and Microscopic Characteristics of Flash Boiling Spray with Binary Fuel Mixtures

2019-04-02
2019-01-0274
Flash boiling has drawn much attention recently for its ability to enhance spray atomization and vaporization, while providing better fuel/air mixing for gasoline direct injection engines. However, the behaviors of flash boiling spray with multi-component fuels have not been fully discovered. In this study, isooctane, ethanol and the mixtures of the two with three blend ratios were chosen as the fuels. Measurements were performed with constant fuel temperature while ambient pressures were varied to adjust the superheated degree. Macroscopic and microscopic characteristics of flash boiling spray were investigated using Diffused Back-Illumination (DBI) imaging and Phase Doppler Anemometry (PDA). Comparisons between flash boiling sprays with single component and binary fuel mixtures were performed to study the effect of fuel properties on spray structure as well as atomization and vaporization processes.
Technical Paper

Spray Characteristics of Gasoline-Ethanol Fuel Blends under Flash-Boiling Conditions

2019-04-02
2019-01-0297
The spray structure and vaporization processes of flash-boiling sprays in a constant volume chamber under a wide range of superheated conditions were experimentally investigated by a high speed imaging technique. The Engine Combustion Network’s Spray G injector was used. Four fuels including gasoline, ethanol, and gasoline-ethanol blends E30 and E50 were investigated. Spray penetration length and spray width were correlated to the degree of the superheated degree, which is the ratio of the ambient pressure to saturated vapor pressure (pa/ps). It is found that parameter pa/ps is critical in describing the spray transformation under flash-boiling conditions. Three distinct stages namely the slight flash-boiling, the transition flash-boiling, and the flare flash-boiling are identified to describe the transformation of spray structures.
X