Refine Your Search

Topic

Search Results

Journal Article

Incorporating Advanced Controls, Displays and other Smart Elements into Space Suit Design

2009-07-12
2009-01-2472
The MX-2 neutral buoyancy space suit analogue has been designed and developed at the University of Maryland to facilitate analysis of space suit components and assessment of the benefits of advanced space suit technologies, The MX-2 replicates the salient features of microgravity pressure suits, including the induced joint torques, visual, auditory and thermal environments, and microgravity through the use of neutral buoyancy simulation. In this paper, design upgrades and recent operations of the suit are outlined, including many experiments and tests of advanced space suit technologies, This paper focuses on the work done using the MX-2 to implement and investigate various advanced controls and displays within the suit, to enhance crewmember situational awareness and effectiveness, and enable human-robotic interaction.
Technical Paper

The Pride of Maryland - A Solar Powered Car for GM Sunraycer USA

1991-02-01
910623
The Pride of Maryland is a single seat solar powered trans-continental race car designed and built by engineering students at the University of Maryland. The car competed in G.M. Sunrayce USA, placing third, and has gone on to compete in the World Solar Challenge. This paper outlines the three general areas of design and development for the solar vehicle: aerodynamic, electrical, and mechanical. An exercise in high efficiency, the Pride of Maryland has been extremely successful as both a race car and as an educational tool for training student engineers in “real world” problems.
Journal Article

Measurement of Smoke Particle Size under Low-Gravity Conditions

2008-06-29
2008-01-2089
Smoke detection experiments were conducted in the Microgravity Science Glovebox (MSG) on the International Space Station (ISS) during Expedition 15 in an experiment entitled Smoke Aerosol Measurement Experiment (SAME). The preliminary results from these experiments are presented. In order to simulate detection of a prefire overheated-material event, samples of five different materials were heated to temperatures below the ignition point. The smoke generation conditions were controlled to provide repeatable sample surface temperatures and air flow conditions. The smoke properties were measured using particulate aerosol diagnostics that measure different moments of the size distribution. These statistics were combined to determine the count mean diameter which can be used to describe the overall smoke distribution.
Technical Paper

Cascade Distillation Subsystem Hardware Development for Verification Testing

2007-07-09
2007-01-3177
Water recovery from wastewater is essential for the success of long-term missions to the Moon and Mars and human crew operations during explorations of these planets. Honeywell International and the team consisting of Thermodistillation Co. ( Kyiv, Ukraine) and NASA JSC Crew and Thermal Systems Division are developing an efficient wastewater processing subsystem that is based on centrifugal vacuum distillation. This subsystem will be tested at the NASA JSC Advanced Water Recovery Systems Development Facility. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and proven multi-stage thermodynamic process to produce purified water efficiently, and its rotary centrifugal design provides gas/liquid phase separation and liquid transport (pumping) under microgravity conditions.
Technical Paper

Smoke Particle Sizes in Low-Gravity and Implications for Spacecraft Smoke Detector Design

2009-07-12
2009-01-2468
This paper presents results from a smoke detection experiment entitled Smoke Aerosol Measurement Experiment (SAME) which was conducted in the Microgravity Science Glovebox on the International Space Station (ISS) during Expedition 15. Five different materials representative of those found in spacecraft were pyrolyzed at temperatures below the ignition point with conditions controlled to provide repeatable sample surface temperatures and air flow conditions. The sample materials were Teflon®, Kapton®, cellulose, silicone rubber and dibutylphthalate. The transport time from the smoke source to the detector was simulated by holding the smoke in an aging chamber for times ranging from 10 to1800 seconds. Smoke particle samples were collected on Transmission Electron Microscope (TEM) grids for post-flight analysis.
Technical Paper

2000 University of Maryland FutureTruck Design Description

2001-03-05
2001-01-0681
The University of Maryland team converted a model year 2000 Chevrolet Suburban to an ethanol-fueled hybrid-electric vehicle (HEV) and tied for first place overall in the 2000 FutureTruck competition. Competition goals include a two-thirds reduction of greenhouse gas (GHG) emissions, a reduction of exhaust emissions to meet California ultra-low emissions vehicle (ULEV) Tier II standards, and an increase in fuel economy. These goals must be met without compromising the performance, amenities, safety, or ease of manufacture of the stock Suburban. The University of Maryland FutureTruck, Proteus, addresses the competition goals with a powertrain consisting of a General Motors 3.8-L V6 engine, a 75-kW (100 hp) SatCon electric motor, and a 336-V battery pack. Additionally, Proteus incorporates several emissions-reducing and energy-saving modifications; an advanced control strategy that is implemented through use of an on-board computer and an innovative hybrid-electric drive train.
Technical Paper

Towards Optimization of Automotive Waste Heat Recovery Using Thermoelectrics

2001-03-05
2001-01-1021
The potential for thermoelectric power generation via waste heat recovery onboard automobiles to displace alternators and/or provide additional charging to a hybrid vehicle battery pack has increased with recent advances in thermoelectric materials processing. A preliminary design/modeling study was performed to optimize waste heat recovery for power generation using a modified radiator incorporating thermoelectric modules. The optimization incorporates not only thermoelectric performance but also critical systems issues such as accessory power consumption, vehicle drag, and added system weight. Results indicate the effectiveness of the thermoelectric module is extremely sensitive to ambient heat rejection and to the operating temperature range of the thermoelectric device.
Technical Paper

Physiological Limits of Underpressure and Overpressure for Mechanical Counter Pressure Suits

2003-07-07
2003-01-2444
The first concept and early experiments of a mechanical counter pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on the lower body as a preliminary study for a lower body garment. The data indicates that the positive pressure was less tolerable than negative pressure. Lower body negative and positive pressure cause various responses in skin blood flow due to not only blood shifts but also direct exposure to pressure differentials.
Technical Paper

Cascaded Distillation Technology for Water Processing in Space

2003-07-07
2003-01-2625
The cascaded distiller CD5 is a 5-stage, rotary vacuum distiller developed jointly by Honeywell International (USA) and Thermodistillation Co. (Kiev, Ukraine) for processing of human urine and other streams of waste water onboard a spacecraft during long-duration missions. Initial performance testing of the first model of the distiller CD5-1 was conducted at the Thermodistillation laboratory in Kiev in 1999. Results of testing demonstrated superior performance of the machine, but also indicated that performance could be improved. This paper reports on performance of the next generation of the distiller, CD5-2, which is an improved model of the cascaded distiller CD5-1.
Technical Paper

Physiological Effects of A Mechanical Counter Pressure Glove

2001-07-09
2001-01-2165
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960’s. MCP provides an alternative approach to the conventional full pressure suit that bears some potential advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. Preliminary results are presented from glovebox testing with an existing MCP glove. The data indicates that properly applied mechanical counter pressure greatly reduces the effect of low-pressure exposure, which makes MCP a viable technology for spacesuit gloves.
Technical Paper

Closed-Loop Carbon Dioxide Removal for the International Space Station (ISS)

2001-07-09
2001-01-2415
Carbon dioxide removal is an essential part of any environmental control and life support system of an enclosed atmosphere. The current state of key technology is the existing International Space Station (ISS) Carbon Dioxide Removal Assembly (CDRA) used to selectively remove carbon dioxide from the cabin atmosphere. The CDRA is part of the ISS air revitalization system. This paper will present approaches to recover the carbon dioxide for down stream processing. A discussion of a closed-loop CDRA system that will selectively remove carbon dioxide from the cabin air supply and this product will be routed to a carbon dioxide reduction system, where the oxygen will be recovered. Using a CDRA system modified for closed loop operation, a case by case illustration of the sequential operation will be presented.
Technical Paper

Physiological Effects of Underpressure and Overpressure in a Study of Mechanical Counter Pressure Suits

2002-07-15
2002-01-2317
The first concept and early experiments of a Mechanical Counter Pressure (MCP) spacesuit were published by Webb in the late 1960's. MCP provides an alternative approach to the conventional full pressure suit that bears some significant advantages, such as increased mobility, dexterity, and tactility. The presented ongoing research provides a thorough investigation of the physiological effect of mechanical counter pressure applied onto the human skin. In this study, we investigated local microcirculatory effects produced with negative and positive ambient pressure on a bare arm, and with a MCP glove and sleeve. The data indicates that the MCP glove and sleeve effectively counteracted the adverse effects of negative environmental pressure.
Technical Paper

Utilization Life of Electronic Systems - Aging Avionics Usable Life and Wear-Out Issues

2002-11-05
2002-01-3013
How a system ages is central to the assessment of the effective utilization life of the system. Utilization life represents more than estimating the remaining life in an aged system, it is determining how to optimally plan a system's future management and future use to minimize the life cycle cost incurred. The consideration of utilization life of a system includes the physics of aging, damage accumulation techniques, mitigation of aging, qualified use of aged parts for spare replenishment, prognostics, and quantification of cost avoidance. Any approach to evaluating utilization life depends on a making an effective evaluation of the reliability, durability and safety of the system. Traditional Mean Time Between Failure (MTBF) metrics that assume a constant failure rate are likely to be less useful in the evaluation and practical implementation of utilization life concepts than Failure Free Operating Period (FFOP).
Technical Paper

The Excite - The University of Maryland's Pre - Transmission Parallel Hybrid Ford Explorer

2003-03-03
2003-01-1266
The University of Maryland FutureTruck Team has redesigned a 2002 Ford Explorer to function as a charge-sustaining parallel hybrid electric vehicle for the 2002-2003 FutureTruck competition. Dubbed the Excite, it is powered by a dedicated E85 3.0L V6 engine coupled to a 21.6 kW peak (10kW continuous), electric motor using a 144V NiMH battery pack. The philosophy behind the UMD plan is to use a smaller, lightweight, dedicated E85 engine in parallel with an electric motor to provide starting and mild assist capabilities. The engine provides similar power to the stock 4.0 L Explorer engine and the electric motor functions as a starter, an alternator, and assists the engine during high power demands. The combination of the two systems provides the Excite with engine-off-at-idle capability, increased efficiency and fuel economy, and decreased emissions while maintaining the utility of a stock SUV.
Technical Paper

Morphing Upper Torso: A Novel Concept in EVA Suit Design

2006-07-17
2006-01-2142
The University of Maryland Space Systems Laboratory and ILC Dover LP have developed a novel concept: a soft pressure garment that can be dynamically reconfigured to tailor its shape properties to the wearer and the desired task set. This underlying concept has been applied to the upper torso of a rear entry suit, in which the helmet ring, waist ring and two shoulder rings make up a system of four interconnected parallel manipulators with tensile links. This configuration allows the dynamic control of both the position and orientation of each of the four rings, enabling modification of critical sizing dimensions such as the inter-scye distance, as well as task-specific orientations such as helmet, scye and waist bearing angles. Half-scale and full-scale experimental models as well as an analytical inverse kinematics model were used to examine the interconnectedness of the plates, the role of external forces generated by pressurized fabric, and the controllability of the system.
Technical Paper

Neural Network Controller Design for a Magnetic Bearing Flywheel Energy Storage System

1992-08-03
929047
The control and analysis of magnetic bearings has been primarily based upon classical linear control theory. This approach does not allow for some important system complexities and nonlinearities to be taken into account. The resulting simplifications degrade the overall system performance. This paper investigates the use of a neural network to control a magnetic bearing flywheel energy storage system. A plant simulation is developed as well as a neural network emulator and controller.
Technical Paper

Computer-Aided Modelling and Analysis of a Magnetic Bearing System

1992-08-03
929045
AMBER (Active Magnetic Bearing Evaluation Routine) is a computer algorithm developed for the University of Maryland pancake magnetic bearing, which supports and controls a flywheel in a kinetic energy storage system. Because of the gap growth due to centrifugal forces at high speed, the bearing axial load capability degrades and the axial characteristics become critical in the bearing design. AMBER applies magnetic circuit theory, magnetic material saturation curves, coenergy theory, and finite permeance-based elements to solve the air gap flux density and coenergy over a series of incremental axial displacements. Differentiation of the coenergy of the magnetic field yields axial force and stiffness characteristics. An axial test machine is constructed to conduct experiments to verify the flux distribution and axial forces predicted by the model. User interaction with AMBER allows modification of the bearing geometry and composition to optimize future prototypes.
Technical Paper

Interface Design Issues of the Ranger Telerobotics Flight Experiment

1995-07-01
951522
While robotics have been employed in many environments, their use in space has been limited by high development costs and reliability issues. Using new management strategies and reduced mission life, the University of Maryland and NASA are developing the Ranger Telerobotic Flight Experiment (TFX), scheduled for flight in early 1997. This mission poses unique requirements on the design and implementation of the ground control station and it's interfaces. Two of the most important design issues are the need for high bandwidth command data, and cost constraints on the operator interface. This paper is intended to briefly outline the Ranger TFX mission, related theory on human perception, capabilities the control station must supply to vehicle designers sot that they can design effective control station interfaces, results from a preliminary study, and suggestions for future research.
Technical Paper

Human and Robotic Enabling Performance System Development and Testing

2005-07-11
2005-01-2969
With a renewed focus on manned exploration, NASA is beginning to prepare for the challenges that lie ahead. Future manned missions will require a symbiosis of human and robotic infrastructure. As a step towards understanding the roles of humans and robots in future planetary exploration, NASA headquarters funded ILC Dover and the University of Maryland to perform research in the area of human and robotic interfaces. The research focused on development and testing of communication components, robotic command and control interfaces, electronic displays, EVA navigation software and hardware, and EVA lighting. The funded research was a 12-month effort culminating in a field test with NASA personnel.
Technical Paper

Flame Kernel Development and its Effects on Engine Performance with Various Spark Plug Electrode Configurations

2005-04-11
2005-01-1133
Two constant-volume combustion chambers and a 2.3L SI engine were used to investigate the effects of spark plug electrode configurations on flame kernel formation and development, and on engine performance. The results showed performance differences between the spark plug types tested in terms of lean ignitability limit and 0-2% MFB time. Overall, the spark plugs with 0.6 mm diameter center electrode, referred to as Finewire spark plugs, were able to ignite the leanest mixtures and were the only spark plug type to demonstrate the lowest predicted 0-2% MFB times for both 0% and 20% EGR. The Schlieren images support the results of better ignitability confirming the fastest flame kernel development with Finewire spark plugs and demonstrating the benefits of J-gap design and fine center electrode. The results explain significant advantages in engine performance in terms of engine stability and fuel consumption rate.
X