Refine Your Search

Topic

Search Results

Journal Article

Water Injection as an Enabler for Increased Efficiency at High-Load in a Direct Injected, Boosted, SI Engine

2017-03-28
2017-01-0663
In a Spark-Ignited engine, there will come a point, as load is increased, where the unburned air-fuel mixture undergoes auto-ignition (knock). The onset of knock represents the upper limit of engine output, and limits the extent of engine downsizing / boosting that can be implemented for a given application. Although effective at mitigating knock, requiring high octane fuel is not an option for most markets. Retarding spark timing can extend the high load limit incrementally, but is still bounded by limits for exhaust gas temperature, and spark retard results in a notable loss of efficiency. Likewise, enriching the air-fuel mixture also decreases efficiency, and has profound negative impacts on engine out emissions. In this current work, a Direct-Injected, Boosted, Spark-Ignited engine with Variable Valve Timing was tested under steady state high load operation. Comparisons were made among three fuels; an 87 AKI, a 91 AKI, and a 110 AKI off-road only race fuel.
Technical Paper

Replication of 50K Vehicle Aged Catalyst Performance Using an Engine Dynamometer Aging Cycle

1997-10-01
972906
Concern in Europe about the environmental impact of the car has lead to ever more stringent emission legislation, and in the near future, conformance to this emission legislation to extended mileage, typically 50,000 miles, will be required. Vehicle manufacturers prove out this conformance by emission testing vehicles at this extended mileage. Mileage accumulation takes several months, so there is a clear need to develop a process which replicates this vehicle aging in a much reduced time frame and cost. This paper describes an engine dynamometer based catalyst aging process and the correlation to European ‘worst case’ 50,000 miles vehicle aged catalysts. Correlations have been achieved for close-coupled catalysts taken from a 1.3 8V and 1.25 16V B-Car sized vehicle. The significance of this correlation allows representative vehicle aged catalysts to be delivered in hours as opposed to months.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

The Effect of Metallurgical Variables on the Machinability of Compacted Graphite Iron

2001-03-05
2001-01-0409
The influence of graphite shape, pearlite content and chemical composition have been investigated to determine their effect on the machinability of compacted graphite iron (CGI). In the comparison to gray iron, the reduced sulfur content of CGI prevents the beneficial formation of a protective manganese sulfide layer on the cutting insert. This accounts for much of the difference in tool life during high speed continuous cutting. Beyond this critical mechanism, the machinability of CGI can be optimized by providing a consistent, low nodularity microstructure with a minimum of tramp elements such as titanium and chromium that form abrasive inclusions.
Technical Paper

Supply Chain Risk Management Applied to Brazilian Automotive Industry

2016-10-25
2016-36-0171
Due to financial global crisis started in 2008 and intensified in the past years in Brazil, the maintenance of a good company’s financial situation is a big challenge and it is more relevant in actual moment. Because of expected turbulent scenario for the next years, it is necessary to adopt strategies to mitigate risks that involve Supply Chain impacting industrial production. In this way, it is crucial adopt strategies and actions that assist to evaluate the performance of suppliers and its associate potential financial risk, what can be considered a companies’ success differential factor during crisis period as well. In this scenario, MWM Motores Diesel adopts an internal process of monitoring the risk of suppliers based on internally developed tools and others available at market. This article aims to assist other companies of automotive sector to monitor their supplier base, identify imminent risk to Supply Chain and trace and run projects to reduce or eliminate these risks.
Technical Paper

Valve Train Kinematic and Dynamic Simulation

2016-10-25
2016-36-0213
In design of valve train systems, it is useful to predict the dynamic behavior to calculate the loads, stresses and contact losses prevention. In this paper a kinematic model was developed over the cam discrete data, building a piecewise cam curve known as Spline, from the continuous curve is possible to predict the valve train kinematic characteristics, evaluating the values of displacement, velocity and acceleration of all valve train components. Based on the kinematic model results, the values of displacement imposed by the cam rotation are applied as input data to the dynamic model, that from a multiple mass system considering stiffness and damping of the components allows to know the valve train vibration behavior calculating the loads, stresses and losses of contact.
Technical Paper

Turbocharger Actuator Influence on Commercial Vehicle Performance and Emissions Powered by Diesel Engines

2016-10-25
2016-36-0334
Currently the high demand for quality and low pollutant emissions in the Diesel commercial vehicles market, it is notable the increase in the sensitivity variation of components. In a commercial vehicle, we have the engine as the main agent, since it has many components under industrial manufacturing processes which may present variations, mainly when it requires critical adjustments. One of the most significant components in the engine performance is the turbocharger. Based on the difficulty to meet the design specification adjustment, this study was performed to detect the possible influences of the waste-gate actuator adjustment. In addition, the study also considers the contribution in terms of emissions, whereas the current legislation requires stringent levels. Therefore, the research was divided into vehicle tests (performance) in a controlled test track with different settings and emissions tests in a steady-state dynamometer.
Technical Paper

Cooling Package Selection through Radiator Area/Material and Fan Blade Angle Variation

2016-10-25
2016-36-0370
This work aims to demonstrate a cooling package selection for an agricultural machine equipped with Diesel engine considering different radiators area / material and fan blade angles, pursuing the best match of performance, cost and weight. It was investigated two types of radiators made from copper-brass and aluminum, two types of charge air cooler varying the dimensions and four types of fans varying the blade angle. The selection method chosen was the experimental testing. The tests were performed according to the standard SAE and internal procedures at MWM Motores Diesel laboratories located at São Paulo / Brazil. When compared with cooper-brass, the aluminum radiator presents worse heat exchange performance what makes its size increase in order to compensate the gap. Even with bigger size, the aluminum radiator keeps lighter and cheaper.
Technical Paper

Investigation of Multi-Hole Impinging Jet High Pressure Spray Characteristics under Gasoline Engine-Like Conditions

2016-04-05
2016-01-0847
Impingement of jet-to-jet has been found to give improved spray penetration characteristics and higher vaporization rates when compared to multi-hole outwardly injecting fuel injectors which are commonly used in the gasoline engine. The current work studies a non-reacting spray by using a 5-hole impinging-jet style direct-injection injector. The jet-to-jet collision induced by the inwardly opening nozzles of the multi-hole injector produces rapid and short jet breakup which is fundamentally different from how conventional fuel injectors operate. A non-reacting spray study is performed using a 5-hole impinging jet injector and a traditional 6-hole Bosch Hochdruck-Einspritzventil (HDEV)-5 gasoline direct-injection (GDI) injector with gasoline as a fuel injected at 172 bar pressure with ambient temperature of 653 K and 490 K and ambient pressure of 37.4 bar and 12.4 bar.
Technical Paper

Numerical Simulations for Spray Characterization of Uneven Multiple Jet-to-Jet Impingement Injectors

2016-04-05
2016-01-0840
Spray structure has a significant effect on emissions and performance of an internal combustion engine. The main objective of this study is to investigate spray structures based on four different multiple jet impingement injectors. These four different multiple jet-to-jet impingement injectors include 1). 4-hole injector (Case 1), which has symmetric inwardly opening nozzles; 2). 5-1-hole (Case 2); 3). 6-2-hole (Case 3); and 4). 7-3-hole (Case 4) which corresponding to 1, 2, 3 numbers of adjacent holes blocked in a 5-hole, 6-hole, and 7-hole symmetrical drill pattern, respectively. All these configurations are basically 4-holes but with different post collision spray structure. Computational Fluid Dynamics (CFD) work of these sprays has been performed using an Eulerian-Lagrangian modelling approach.
Technical Paper

Supplier Base Optimization on MWM MAR-I Diesel Engines Launch

2017-11-07
2017-36-0139
Due to the introduction of PROCONVE MAR-I emission regulation, the Brazilian automotive industry developed Diesel engines to comply with this legislation demanding new components to automotive supplier base. However, at the same time this industrial sector was facing a difficult financial situation caused mainly by the crisis that impacted Brazil in last years. In 2015, around 27 local suppliers filed for bankruptcy affecting the whole Automotive Supply Chain. This scenario already represents a problem for current products established in market, but it represents a major challenge for new launches. This paper will discuss how MWM Motores Diesel made sourcing decisions and manage to develop components and suppliers in this harsh scenario, also looking for the supplier base optimization.
Technical Paper

Examination of Factors Impacting Unaccounted Fuel Post GDI Fuel Injector Closing

2018-04-03
2018-01-0300
The characteristics of gasoline sprayed directly into combustion chambers are of critical importance to engine out emissions and combustion system development. The optimization of the spray characteristics to match the in-cylinder flow field, chamber geometry, and spark location is a vital tasks during the development of an engine combustion strategy. Furthermore, the presence of liquid fuel during combustion in Spark-Ignition (SI) engines causes increased hydro-carbon (HC) emissions. Euro 6, LEVIII, and US Tier 3 emissions regulations reduce the allowable particulate mass significantly from the previous standards. LEVIII standards reduce the acceptable particulate emission to 1 mg/mile. A good DISI strategy vaporizes the correct amount of fuel just in time for optimal power output with minimal emissions. The opening and closing phases of DISI injectors are crucial to this task as the spray produces larger droplets during both theses phases.
Technical Paper

Evaluation of Diesel Spray-Wall Interaction and Morphology around Impingement Location

2018-04-03
2018-01-0276
The necessity to study spray-wall interaction in internal combustion engines is driven by the evidence that fuel sprays impinge on chamber and piston surfaces resulting in the formation of wall films. This, in turn, may influence the air-fuel mixing and increase the hydrocarbon and particulate matter emissions. This work reports an experimental and numerical study on spray-wall impingement and liquid film formation in a constant volume combustion vessel. Diesel and n-heptane were selected as test fuels and injected from a side-mounted single-hole diesel injector at injection pressures of 120, 150, and 180 MPa on a flat transparent window. Ambient and plate temperatures were set at 423 K, the fuel temperature at 363 K, and the ambient densities at 14.8, 22.8, and 30 kg/m3. Simultaneous Mie scattering and schlieren imaging were carried out in the experiment to perform a visual tracking of the spray-wall interaction process from different perspectives.
Technical Paper

Using a DNS Framework to Test a Splashed Mass Sub-Model for Lagrangian Spray Simulations

2018-04-03
2018-01-0297
Numerical modeling of fuel injection in internal combustion engines in a Lagrangian framework requires the use of a spray-wall interaction sub-model to correctly assess the effects associated with spray impingement. The spray impingement dynamics may influence the air-fuel mixing and result in increased hydrocarbon and particulate matter emissions. One component of a spray-wall interaction model is the splashed mass fraction, i.e. the amount of mass that is ejected upon impingement. Many existing models are based on relatively large droplets (mm size), while diesel and gasoline sprays are expected to be of micron size before splashing under high pressure conditions. It is challenging to experimentally distinguish pre- from post-impinged spray droplets, leading to difficulty in model validation.
Technical Paper

An Experimental Single Cylinder “ECCLINK” VCR Engine

1992-09-01
921695
The improvement in both performance and thermal efficiency of internal combustion engines at higher compression ratios is a well known phenomena. Indeed, a simple Otto Cycle analysis show a potential efficiency improvement of 13% by increasing the compression ratio from 9:1 to 15:1. However, the dilemma for engineers has always been in the realization of a practical operational mechanism. This paper describes the ECCLINK VCR mechanism which enables compression ratio to be altered within given limits on a running engine. A single cylinder 500 cm3 four-stroke research engine, incorporating the ECCLINK mechanism, has been built and tested. Results are presented at both full load and part load over a range of compression ratios, showing improvements in performance and fuel economy. Of particular interest is the fact that full load bsfc improvements equate to typical Otto cycle values.
Technical Paper

Ford 4-Valve Light-Duty DI Diesel Developments

1994-10-01
941926
This paper recounts a brief history of Ford high speed direct injection (HSDI) diesel engines; from the original 2.5 litre naturally aspirated (NA) engine introduced 10 years ago as the world's first high volume HSDI diesel, followed by the introduction of the turbocharged version in 1992 with drive-by-wire electronic fuel injection pump, to the latest low emission version developed to meet recent European Commission (EC) “Stage 2” 94/12/EC standards. The performance development of a prototype 4-valve per cylinder version of the 2.5 litre engine is briefly described, covering the fuel injection equipment, exhaust gas recirculation (EGR) tolerance, regulated emissions capability including the important oxides of nitrogen (NOx) and particulates trade-off, and the performance potential of this combustion system.
Technical Paper

Road Simulators: The Iterative Algorithm for Drive File Creation

2006-04-03
2006-01-0731
Road simulators reproduce measured service environments in laboratory based test rigs and have contributed significantly to improving the structural integrity and quality of modern vehicles. These rigs are driven by data that are derived from a specified response and the frequency response function of the test rig in an iterative process. This paper introduces an alternative iterative procedure that converges to a valid drive file in fewer iteration steps than the current algorithm.
Technical Paper

Innovation in Europe - A Way of Life: 1986 SAE/I Mech E EXCHANGE LECTURE

1986-08-01
861090
The writer examines the relationship between the history of innovation in Europe and future creative trends. The role played by the European industry as product innovators from the original inception of the motor vehicle is traced. The relationship between novel product and the development of manufacturing technique is discussed, conclusions are drawn from the historical patterns which may have relevance in the future. The interactive role of manufacturing and product innovation and their relationship to growth are considered. A possible route for industry to respond to market driven need for innovative solutions in the face of the established capital intensive industrial structure is set out.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

Investigation into the Performance of an Ultra-fast Response NO Analyser Equipped with a NO2 to NO Converter for Gasoline and Diesel Exhaust NOx Measurements

2000-10-16
2000-01-2954
The development and optimisation of an ultra-fast response chemiluminescence NOx analyser, equipped with a high temperature stainless steel, nitrogen dioxide (NO2) to nitric oxide (NO) converter, for the transient measurement of the NOx (NO + NO2) content of automotive emissions is described. Conventional analysers routinely used to measure NOx in automotive exhaust utilise chemiluminescence detection (CLD). Ultra-fast time-scale analysis using CLD, however, has traditionally been hindered by the slow conversion of NO2 to NO. The converter and technology used in the instrument described herein enables a 10-90% response time of less than 10 ms. Following optimisation in the laboratory, the fast response CLD NOx analyser was evaluated for raw exhaust sampling of port fuel injected (PFI) gasoline and diesel vehicles.
X