Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Energy Finite Element Analysis Developments for Vibration Analysis of Composite Aircraft Structures

2011-05-17
2011-01-1734
The Energy Finite Element Analysis (EFEA) has been utilized successfully for modeling complex structural-acoustic systems with isotropic structural material properties. In this paper, a formulation for modeling structures made out of composite materials is presented. An approach based on spectral finite element analysis is utilized first for developing the equivalent material properties for the composite material. These equivalent properties are employed in the EFEA governing differential equations for representing the composite materials and deriving the element level matrices. The power transmission characteristics at connections between members made out of non-isotropic composite material are considered for deriving suitable power transmission coefficients at junctions of interconnected members. These coefficients are utilized for computing the joint matrix that is needed to assemble the global system of EFEA equations.
Technical Paper

Interior Aircraft Noise Computations due to TBL Excitation using the Energy Finite Element Analysis

2009-05-19
2009-01-2248
The Energy Finite Element Analysis (EFEA) has been developed for evaluating the vibro-acoustic behavior of complex systems. In the past EFEA results have been compared successfully to measured data for Naval, automotive, and aircraft systems. The main objective of this paper is to present information about the process of developing EFEA models for two configurations of a business jet, performing analysis for computing the vibration and the interior noise induced from exterior turbulent boundary layer excitation, and discussing the correlation between test data and simulation results. The structural EFEA model is generated from an existing finite element model used for stress analysis during the aircraft design process. Structural elements used in the finite element model for representing the complete complex aircraft structure become part of the EFEA structural model.
Technical Paper

3-D Numerical Study of Fluid Flow and Pressure Loss Characteristics through a DPF with Asymmetrical Channel size

2011-04-12
2011-01-0818
The main objective of the current paper was to investigate the fluid flow and pressure loss characteristics of DPF substrates with asymmetric channels utilizing 3-D Computational Fluid Dynamics (CFD) methods. The ratio of inlet to outlet channel width is 1.2. First, CFD results of velocity and static pressure distributions inside the inlet and outlet channels are discussed for the baseline case with both forward and reversed exhaust flow. Results were also compared with the regular DPF of same cell structure and wall material properties. It was found that asymmetrical channel design has higher pressure loss. The lowest pressure loss was found for the asymmetrical channel design with smaller inlet channels. Then, the effects of DPF length and filter wall permeability on pressure loss, flow and pressure distributions were investigated.
X