Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Applying Virtual Statistical Modeling for Vehicle Dynamics

2010-04-12
2010-01-0019
Dimensional variation simulation is a computer aided engineering (CAE) method that analyzes the statistical efforts of the component variation to the quality of the final assembly. The traditional tolerance analysis method and commercial CAE software are often based on the assumptions of the rigid part assembly. However, the vehicle functional attributes, such as, ride and handling, NVH, durability and reliability, require understanding the assembly quality under various dynamic conditions while achieving vehicle dimensional clearance targets. This paper presents the methods in evaluating and analyzing the impacts of the assembly variations for the vehicle dynamic performance. Basic linear tolerance stack method and advanced study that applies various CAE tools for the virtual quality analysis in the product and process design will be discussed.
Journal Article

Design Optimization of a Series Plug-in Hybrid Electric Vehicle for Real-World Driving Conditions

2010-04-12
2010-01-0840
This paper proposes a framework to perform design optimization of a series PHEV and investigates the impact of using real-world driving inputs on final design. Real-World driving is characterized from a database of naturalistic driving generated in Field Operational Tests. The procedure utilizes Markov chains to generate synthetic drive cycles representative of real-world driving. Subsequently, PHEV optimization is performed in two steps. First the optimal battery and motor sizes to most efficiently achieve a desired All Electric Range (AER) are determined. A synthetic cycle representative of driving over a given range is used for function evaluations. Then, the optimal engine size is obtained by considering fuel economy in the charge sustaining (CS) mode. The higher power/energy demands of real-world cycles lead to PHEV designs with substantially larger batteries and engines than those developed using repetitions of the federal urban cycle (UDDS).
Journal Article

A Primer on Building a Hardware in the Loop Simulation and Validation for a 6X4 Tractor Trailer Model

2014-04-01
2014-01-0118
This research was to model a 6×4 tractor-trailer rig using TruckSim and simulate severe braking maneuvers with hardware in the loop and software in the loop simulations. For the hardware in the loop simulation (HIL), the tractor model was integrated with a 4s4m anti-lock braking system (ABS) and straight line braking tests were conducted. In developing the model, over 100 vehicle parameters were acquired from a real production tractor and entered into TruckSim. For the HIL simulation, the hardware consisted of a 4s4m ABS braking system with six brake chambers, four modulators, a treadle and an electronic control unit (ECU). A dSPACE simulator was used as the “interface” between the TruckSim computer model and the hardware.
Journal Article

Integrated Low Temperature Cooling System Development in Turbo Charged Vehicle Application

2014-04-01
2014-01-0638
The Low Temperature Cooling (LTC) system is commonly developed for secondary cooling function requirements, such as forced induction air cooling, and HEV power electronics module cooling. The large heat transfer capacity of coolant allows for very compact water-cooled heat exchangers to be installed remotely for better underhood aerodynamic characteristics and more compact packaging design. An integrated LTC loop developed on a Hyundai 2.0L Turbo Charged vehicle extends a traditional WCAC (Water-cooled charged air cooler) application to include a water-cooled condenser (WCOND) module. Unlike other published LTC system design approaches, this research project emphasizes underhood airflow improvement strategy and focuses on heat transfer efficiency. This paper discusses the integrated LTC loop configuration, Low Temperature Radiator (LTR) design, coolant flow control, and others.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Journal Article

CAE Applications and Techniques used in Calculating the Snaps Insertions and Retentions Efforts in Automotive Trims

2014-04-01
2014-01-1032
A snap-fit is a form-fitting joint, which is used to assemble plastic parts together. Snap-fits are available in different forms like a projecting clip, thicker section or legs in one part, and it is assembled to another part through holes, undercuts or recesses. The main function of the snap-fit is to hold the mating components, and it should withstand the vibration and durability loads. Snap-fits are easy to assemble, and should not fail during the assembling process. Based on the design, these joints may be separable or non-separable. The non- separable joints will withstand the loads till failure, while separable joints will withstand only for the design load. The insertion and the retention force calculation for the snaps are very essential for snap-fit design. The finite element analysis plays a very important role in finding the insertion and the retention force values, and also to predict the failure of the snaps and the mating components during this process.
Journal Article

Fast and Efficient Detection of Shading of the Objects

2015-04-14
2015-01-0371
The human thermal comfort, which has been a subject of extensive research, is a principal objective of the automotive climate control system. Applying the results of research studies to the practical problems require quantitative information of the thermal environment in the passenger compartment of a vehicle. The exposure to solar radiation is known to alter the thermal environment in the passenger compartment. A photovoltaic-cell based sensor is commonly used in the automotive climate control system to measure the solar radiation exposure of the passenger compartment of a vehicle. The erroneous information from a sensor however can cause thermal discomfort to the occupants. The erroneous measurement can be due to physical or environmental parameters. Shading of a solar sensor due to the opaque vehicle body elements is one such environmental parameter that is known to give incorrect measurement.
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Technical Paper

Calibration of Electrochemical Models for Li-ion Battery Cells Using Three-Electrode Testing

2020-04-14
2020-01-1184
Electrochemical models of lithium ion batteries are today a standard tool in the automotive industry for activities related to the computer-aided engineering design, analysis, and optimization of energy storage systems for electrified vehicles. One of the challenges in the development or use of such models is the need of detailed information on the cell and electrode geometry or properties of the electrode and electrolyte materials, which are typically unavailable or difficult to retrieve by end-users. This forces engineers to resort to “hand-tuning” of many physical and geometrical parameters, using standard cell-level characterization tests. This paper proposes a method to provide information and data on individual electrode performance that can be used to simplify the calibration process for electrochemical models.
Technical Paper

The Influence of the Operating Duty Cycles on the Composition of Exhaust Gas Recirculation Cooler Deposits of Industrial Diesel Engines

2020-04-14
2020-01-1164
Exhaust Gas Recirculation (EGR) coolers are commonly used in on-road and off-road diesel engines to reduce the recirculated gas temperature in order to reduce NOx emissions. One of the common performance behaviors for EGR coolers in use on diesel engines is a reduction of the heat exchanger effectiveness, mainly due to particulate matter (PM) deposition and condensation of hydrocarbons (HC) from the diesel exhaust on the inside walls of the EGR cooler. According to previous studies, typically, the effectiveness decreases rapidly initially, then asymptotically stabilizes over time. Prior work has postulated a deposit removal mechanism to explain this stabilization phenomenon. In the present study, five field aged EGR cooler samples that were used on construction machines for over 10,000 hours were analyzed in order to understand the deposit structure as well as the deposit composition after long duration use.
Technical Paper

Machine Learning Techniques for Classification of Combustion Events under Homogeneous Charge Compression Ignition (HCCI) Conditions

2020-04-14
2020-01-1132
This research evaluates the capability of data-science models to classify the combustion events in Cooperative Fuel Research Engine (CFR) operated under Homogeneous Charge Compression Ignition (HCCI) conditions. A total of 10,395 experimental data from the CFR engine at the University of Michigan (UM), operated under different input conditions for 15 different fuel blends, were utilized for the study. The combustion events happening under HCCI conditions in the CFR engine are classified into four different modes depending on the combustion phasing and cyclic variability (COVimep). The classes are; no ignition/high COVimep, operable combustion, high MPRR, and early CA50. Two machine learning (ML) models, K-nearest neighbors (KNN) and Support Vector Machines (SVM), are compared for their classification capabilities of combustion events. Seven conditions are used as the input features for the ML models viz.
Technical Paper

Evaluating the Performance of a Conventional and Hybrid Bus Operating on Diesel and B20 Fuel for Emissions and Fuel Economy

2020-04-14
2020-01-1351
With ongoing concerns about the elevated levels of ambient air pollution in urban areas and the contribution from heavy-duty diesel vehicles, hybrid electric vehicles are considered as a potential solution as they are perceived to be more fuel efficient and less polluting than their conventional engine counterparts. However, recent studies have shown that real-world emissions may be substantially higher than those measured in the laboratory, mainly due to operating conditions that are not fully accounted for in dynamometer test cycles. At the U.S. EPA National Fuel and Vehicle Emissions Laboratory (NVFEL) the in-use criteria emissions and energy efficiency of heavy-duty class 8 vehicles (up to 36280 kg) can be evaluated under controlled conditions in the heavy-duty chassis dynamometer test.
Technical Paper

Numerical Investigation of Friction Material Contact Mechanics in Automotive Clutches

2020-04-14
2020-01-1417
A wet clutch model is required in automotive propulsion system simulations for enabling robust design and control development. It commonly assumes Coulomb friction for simplicity, even though it does not represent the physics of hydrodynamic torque transfer. In practice, the Coulomb friction coefficient is treated as a tuning parameter in simulations to match vehicle data for targeted conditions. The simulations tend to deviate from actual behaviors for different drive conditions unless the friction coefficient is adjusted repeatedly. Alternatively, a complex hydrodynamic model, coupled with a surface contact model, is utilized to enhance the fidelity of system simulations for broader conditions. The theory of elastic asperity deformation is conventionally employed to model clutch surface contact. However, recent examination of friction material shows that the elastic modulus of surface fibers significantly exceeds the contact load, implying no deformation of fibers.
Journal Article

Power Dense and Robust Traction Power Inverter for the Second-Generation Chevrolet Volt Extended-Range EV

2015-04-14
2015-01-1201
The Chevrolet Volt is an electric vehicle with extended-range that is capable of operation on battery power alone, and on engine power after depletion of the battery charge. First generation Chevrolet Volts were driven over half a billion miles in North America from October 2013 through September 2014, 74% of which were all-electric [1, 12]. For 2016, GM has developed the second-generation of the Volt vehicle and “Voltec” propulsion system. By significantly re-engineering the traction power inverter module (TPIM) for the second-generation Chevrolet Volt extended-range electric vehicle (EREV), we were able to meet all performance targets while maintaining extremely high reliability and environmental robustness. The power switch was re-designed to achieve efficiency targets and meet thermal challenges. A novel cooling approach enables high power density while maintaining a very high overall conversion efficiency.
Journal Article

Control Strategies for Power Quantized Solid Oxide Fuel Cell Hybrid Powertrains: In Mobile Robot Applications

2016-04-05
2016-01-0317
This paper addresses scheduling of quantized power levels (including part load operation and startup/shutdown periods) for a propane powered solid oxide fuel cell (SOFC) hybridized with a lithium-ion battery for a tracked mobile robot. The military requires silent operation and long duration missions, which cannot be met by batteries alone due to low energy density or with combustion engines due to noise. To meet this need we consider an SOFC operated at a few discrete power levels where maximum system efficiency can be achieved. The fuel efficiency decreases during transients and resulting thermal gradients lead to stress and degradation of the stack; therefore switching power levels should be minimized. Excess generated energy is used to charge the battery, but when it’s fully charged the SOFC should be turned off to conserve fuel.
Journal Article

Impact of Different Desired Velocity Profiles and Controller Gains on Convoy Driveability of Cooperative Adaptive Cruise Control Operated Platoons

2017-03-28
2017-01-0111
As the development of autonomous vehicles rapidly advances, the use of convoying/platooning becomes a more widely explored technology option for saving fuel and increasing the efficiency of traffic. In cooperative adaptive cruise control (CACC), the vehicles in a convoy follow each other under adaptive cruise control (ACC) that is augmented by the sharing of preceding vehicle acceleration through the vehicle to vehicle communication in a feedforward control path. In general, the desired velocity optimization for vehicles in the convoy is based on fuel economy optimization, rather than driveability. This paper is a preliminary study on the impact of the desired velocity profile on the driveability characteristics of a convoy of vehicles and the controller gain impact on the driveability. A simple low-level longitudinal model of the vehicle has been used along with a PD type cruise controller and a generic spacing policy for ACC/CACC.
Journal Article

Study on Fatigue Behaviors of Porous T300/924 Carbon Fiber Reinforced Polymer Unidirectional Laminates

2017-03-28
2017-01-0223
Morphological features of voids were characterized for T300/924 12-ply and 16-ply composite laminates at different porosity levels through the implementation of a digital microscopy (DM) image analysis technique. The composite laminates were fabricated through compression molding. Compression pressures of 0.1MPa, 0.3MPa, and 0.5MPa were selected to obtain composite plaques at different porosity levels. Tension-tension fatigue tests at load ratio R=0.1 for composite laminates at different void levels were conducted, and the dynamic stiffness degradation during the tests was monitored. Fatigue mechanisms were then discussed based on scanning electron microscope (SEM) images of the fatigue fracture surfaces. The test results showed that the presence of voids in the matrix has detrimental effects on the fatigue resistance of the material, depending on the applied load level.
Journal Article

Three-Dimensional Three-Component Air Flow Visualization in a Steady-State Engine Flow Bench Using a Plenoptic Camera

2017-03-28
2017-01-0614
Plenoptic particle tracking velocimetry (PTV) shows great potential for three-dimensional, three-component (3D3C) flow measurement with a simple single-camera setup. It is therefore especially promising for applications in systems with limited optical access, such as internal combustion engines. The 3D visualization of a plenoptic imaging system is achieved by inserting a micro-lens array directly anterior to the camera sensor. The depth is calculated from reconstruction of the resulting multi-angle view sub-images. With the present study, we demonstrate the application of a plenoptic system for 3D3C PTV measurement of engine-like air flow in a steady-state engine flow bench. This system consists of a plenoptic camera and a dual-cavity pulsed laser. The accuracy of the plenoptic PTV system was assessed using a dot target moved by a known displacement between two PTV frames.
Technical Paper

Engine and Aftertreatment Co-Optimization of Connected HEVs via Multi-Range Vehicle Speed Planning and Prediction

2020-04-14
2020-01-0590
Connected vehicles (CVs) have situational awareness that can be exploited for control and optimization of the powertrain system. While extensive studies have been carried out for energy efficiency improvement of CVs via eco-driving and planning, the implication of such technologies on the thermal responses of CVs (including those of the engine and aftertreatment systems) has not been fully investigated. One of the key challenges in leveraging connectivity for optimization-based thermal management of CVs is the relatively slow thermal dynamics, which necessitate the use of a long prediction horizon to achieve the best performance. Long-term prediction of the CV speed, unlike the short-range prediction based on vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) communications-based information, is difficult and error-prone.
Technical Paper

Development of Advanced Idle Stop-and-Go Control Utilizing V2I

2020-04-14
2020-01-0581
Idle Stop-and-go (ISG), also known as Auto Stop/Start, is a fuel saving technology common to many modern vehicles that enables the engine to shut down when the vehicle comes to a stop. Although it may help with fuel efficiency, many drivers in the North American market find the feature to be an annoyance due to hesitation in vehicle re-launch and engine shudder during stop or restart. This paper introduces the usage of traffic signal phase and timing (SPaT) information for controlling the activation of ISG with the goal of reducing driver complaints and increasing acceptance of the function. Previous studies proposed the utilization of Advanced Driver Assistance System (ADAS) to introduce adaptability in powertrain controls to traffic situation changes.
X