Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Navier-Stokes Computations of Transition to Turbulent Flow Around Airfoils

1990-09-01
901808
Numerical solutions of the Reynolds-averaged Navier-Stokes equations were obtained with the two-equation K-ϵ turbulence model. Considering the low-Reynolds-number effect in the closed vicinity of a solid boundary, a stream function and vorticity method was developed to consider both the laminar and turbulent stresses throughout the two-dimensional, incompressible flowfield of any arbitrary geometry. At a low Reynolds number (Re = 30), the initially imposed disturbances around an airfoil are damped out; the flow is laminar. At a moderately high Reynolds number (Re = 1000), instability of laminar flow is obtained by exhibiting cyclic patterns in the stream function and vorticity distributions. Nevertheless, only laminar stress occurs in the entire flowfield. At a higher Reynolds number (Re = 106), turbulent stress, which is about three orders of magnitude larger than the laminar stress, occurs at a certain distance downstream of the leading edge and in the wake region.
Technical Paper

Computational Study of Boundary Layer Control for Improving Airfoil Performance

1993-09-01
932513
A computational method was developed for investigating boundary layer control. Solutions of the Reynolds-averaged Navier-Stokes equations were obtained using the two-equation k-∈ turbulence model which includes the low-Reynolds-number effect in the near-wall region. Stream function and vorticity together with the turbulent kinetic energy and its dissipation rate were calculated for the flowfield in a body-fitted coordinate system. By increasing the amount of suction on the upper surface, flow separation could be totally eliminated. Transition from laminar to turbulent flow was delayed. Aerodynamic performance was substantially improved.
Technical Paper

Analysis of the Effect of Heat Strips on Boundary Layer Development Over a Flat Plate

1992-10-01
921923
Two dimensional fourth order boundary layer calculations were made for flows over a flat plate with and without flush mounted surface heating. Constant wall temperature, increasing wall temperature and decreasing wall temperature heating cases were studied for different surface heating lengths. The boundary layer properties; temperature, tangential velocity, normal velocity, vorticity and transition location were studied for these temperature distributions. The boundary layer results indicate that with the proper selection of surface temperature variation and length the transition location can be either increased or decreased. Modified boundary layer properties, due to heating are shown to persist well after heating is stopped, even when the flow is turbulent. The results indicate that this technique may be useful in modifying transition and separation locations over airfoils.
Technical Paper

Combined Impacts of Engine Speed and Fuel Reactivity on Energy-Assisted Compression-Ignition Operation with Sustainable Aviation Fuels

2023-04-11
2023-01-0263
The combined impacts of engine speed and fuel reactivity on energy-assisted compression-ignition (EACI) combustion using a commercial off-the-shelf (COTS) ceramic glow plug for low-load operation werexxz investigated. The COTS glow plug, used as the ignition assistant (IA), was overdriven beyond its conventional operation range. Engine speed was varied from 1200 RPM to 2100 RPM. Three fuel blends consisting of a jet-A fuel with military additives (F24) and a low cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) were tested with cetane numbers (CN) of 25.9, 35.5, and 48.5. The ranges of engine speed and fuel cetane numbers studied are significantly larger than those in previous studies of EACI or glow-plug assisted combustion, and the simultaneous variation of engine speed and fuel reactivity are unique to this work. For each speed and fuel, a single-injection of fixed mass was used and the start of injection (SOI) was swept for each IA power.
Technical Paper

Impact of a Split-Injection Strategy on Energy-Assisted Compression-Ignition Combustion with Low Cetane Number Sustainable Aviation Fuels

2024-04-09
2024-01-2698
The influence of a split-injection strategy on energy-assisted compression-ignition (EACI) combustion of low-cetane number sustainable aviation fuels was investigated in a single-cylinder direct-injection compression-ignition engine using a ceramic ignition assistant (IA). Two low-cetane number fuels were studied: a low-cetane number alcohol-to-jet (ATJ) sustainable aviation fuel (SAF) with a derived cetane number (DCN) of 17.4 and a binary blend of ATJ with F24 (Jet-A fuel with military additives, DCN 45.8) with a blend DCN of 25.9 (25 vol.% F24, 75 vol.% ATJ). A pilot injection mass sweep (3.5-7.0 mg) with constant total injection mass and an injection dwell sweep (1.5-3.0 ms) with fixed main injection timing was performed. Increasing pilot injection mass was found to reduce cycle-to-cycle combustion phasing variability by promoting a shorter and more repeatable combustion event for the main injection with a shorter ignition delay.
X