Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

Computational Study of Coanda Adhesion Over Curved Surface

2013-09-17
2013-01-2302
This paper presents a set of numerical computations with different turbulence model on an air jet flowing tangentially over the curved surface. It has been realized that jet deflection angle and the corresponding thrust are important parameter to determine with great care. Through the grid independence analysis, it has been found that without resolution of the viscous sub-layer, it is not possible to determine the computationally independent angle of jet deflection and boundary layer thickness. The boundary layer analysis has been performed at different radius of curvature and at jet Reynolds number ranging from approximately about 2400-10,000. The boundary layer thickness has been determined at the verge of separation and found a relation with the radius of curvature and jet Reynolds number. The skin-friction coefficient has been also studied at the verge of separation in relation to the surface radius and jet Reynolds number.
Technical Paper

Rolling Element Bearings - Advanced Modeling for Multibody Simulations

2020-04-14
2020-01-0508
This paper focuses on the modeling of rolling element bearings, a key component that is responsible of transmitting the vibrations from the gear pairs to the surrounding structure while introducing additional excitation frequencies. The modeling techniques use the relative displacement of the rings to compute the corresponding reaction forces by calculating the equilibrium of each rolling element. To do so, the interaction between the rolling elements and the raceways can be modeled employing two different contact models depending on the level of accuracy required. The contact models are, respectively, a Hertz-based approach that allows for fast computations, and an EHL (Elasto-Hydrodynamic Lubricated) contact model which accounts for the effects of lubrication. The procedure to calculate the equilibrium of the rolling elements allows for grasping the main effects, including centrifugal loads and misalignments.
Technical Paper

Experimental and Numerical Investigation of Split Injections at Low Load in an HDDI Diesel Engine Equipped with a Piezo Injector

2006-10-16
2006-01-3433
In order to investigate the effects of split injection on emission formation and engine performance, experiments were carried out using a heavy duty single cylinder diesel engine. Split injections with varied dwell time and start of injection were investigated and compared with single injection cases. In order to isolate the effect of the selected parameters, other variables were kept constant. In this investigation no EGR was used. The engine was equipped with a common rail injection system with a piezo-electric injector. To interpret the observed phenomena, engine CFD simulations using the KIVA-3V code were also made. The results show that reductions in NOx emissions and brake specific fuel consumption were achieved for short dwell times whereas they both were increased when the dwell time was prolonged. No EGR was used so the soot levels were already very low in the cases of single injections.
Journal Article

Investigation of the Influence of Different Asperity Contact Models on the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2018-04-03
2018-01-0836
Bearings represent one of the main causes of friction losses in internal combustion engines, and their lubrication performance has a crucial influence on the operating condition of the engine. In particular, the conrod small-end bearing is one of the most critical engine parts from a tribological point of view since limited contact surfaces have to support high inertial and combustion forces. In this contribution an analysis is performed of the tribological behavior of the lubricated contact between the piston pin and the conrod small-end of a high performance motorbike engine. A mass-conserving algorithm is employed to solve the Reynolds equation based on a complementarity formulation of the cavitation problem. The analysis of the asperity contact problem is addressed in detail. A comparison between two different approaches is presented, the former based on the standard Greenwood/Tripp theory and the latter based on a complementarity formulation of the asperity contact problem.
Technical Paper

External Gear Pump Volumetric Efficiency: Numerical and Experimental Analysis

2009-10-06
2009-01-2844
External gear pumps and motors are robust and low cost positive displacement machines and are widely used in industrial and mobile applications. Nowadays however, optimal global efficiency represents a more crucial aspect to be considered when designing a hydraulic machine. For this reason, it becomes a primary necessity to investigate the phenomena which determine and affect the hydraulic machine total efficiency. In this work, the volumetric efficiency dependence on the operating speed and delivery pressure of external gear pumps is investigated by means of a mathematical model already presented in a previous paper and the results obtained are compared with experimental data. First of all, the mathematical model is briefly presented; then the predicted results are discussed considering the influence of the pump operating conditions.
Technical Paper

Development of a 2-Stage Supercharging System for a HSDI Diesel Engine

2009-11-02
2009-01-2757
2-stage supercharging applied to HSDI Diesel engines is a promising solution for enhancing rated power, low end torque, transient response and hence the launch characteristics of a vehicle. However, a trade-off is required to match some conflicting issues, i.e. overall dimensions, cost, emissions control and performance. The outcome strongly depends on the specific constraints and goals of the project. In the paper, reference is made to 2.8L, 4 cylinder in-line unit produced by VM Motori (Cento, Italy), equipped by a standard variable geometry turbocharger. A 1D thermo-fluid-dynamic model of the Euro V version of the engine was built and calibrated against experiments at the dynamometer bench, at both full and partial load.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Technical Paper

Large-Scale CFD Approach for Spray Combustion Modelling in Compression-Ignited Engines

2005-09-11
2005-24-052
Computational simulations of the spray combustion and emissions formation processes in a heavy-duty DI diesel engine and in a small-bore DI diesel engine with a complicated injection schedule were performed by using the modified KIVA3V, rel. 2 code. Some initial parameter sets varying engine operating conditions, such as injection pressure, injector nozzle diameter, EGR load, were examined in order to evaluate their effects on the engine performance. Full-scale combustion chamber representations on 360-deg, Cartesian and polar, multiblock meshes with a different number of sprays have been used in the modelling unlike the conventional approach based on polar sector meshes covering the region around one fuel spray. The spray combustion phenomena were simulated using the detailed chemical mechanism for diesel fuel surrogate (69 species and 306 reactions).
Journal Article

Experimental Measurement of Roughness Data and Evaluation of Greenwood/Tripp Parameters for the Elastohydrodynamic Analysis of a Conrod Small-End/Piston Pin Coupling

2019-09-09
2019-24-0081
For the investigation of the tribological behavior of lubricated contacts, the choice and the calibration of the adopted asperity contact model is fundamental, in order to properly mimic the mixed lubrication conditions. The Greenwood/Tripp model is extensively adopted by the commercial software commonly employed to simulate lubricated contacts. This model, based on a statistic evaluation of the number of asperities in contact and on the Hertzian contact theory, has the advantage of introducing a simple relationship between oil film thickness and asperity contact pressure, considerably reducing the simulation time. However, in order to calibrate the model, some non-standard roughness parameters are required, that are not available from commercial roughness measuring equipment. Standard values, based on some limited experiences, are typically used, and a limited literature can be found focusing on how to evaluate them, thus reducing the predictivity of the model.
Technical Paper

CFD Investigation of the Thermo-Mechanical Behavior of a High Performance Bike Engine

2011-11-08
2011-32-0525
The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. motorbike engine water cooling jacket. The computational domain covers both the coolant jacket and the surrounding metal components (head, block, gasket, valves, valve seats, valve guides, cylinder liner, spark plug). In view of the complexity of the modeled geometry, particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. The CFD-CHT simulation of water cooling jackets involves many complex physical phenomena: in order to setup a robust numerical procedure, the contribution of some relevant CFD parameters and sub-models was discussed by the authors in previous publications and is referred to [1, 2, 3, 4].
Journal Article

Numerical Analysis of the Dynamic Behaviour of Axial Piston Pumps and Motors Slipper Bearings

2009-06-15
2009-01-1820
This paper reports an analysis of the lubrication mechanism and the dynamic behaviour of axial piston pumps and motors slipper bearings. A numerical procedure is used to solve the Reynolds equation, written here with respect to the slipper-swash plate gap, whose height is considered variable in a two dimensional field and with time. The contributions of forces and moments acting on the slipper are illustrated and discussed, then the numerical method is presented to solve the Reynolds equation. Taking into consideration the slipper surface that is facing the swash plate, different geometry profiles are considered and the subsequent dynamic behaviour of the slipper is investigated; in particular, it is shown that a flat profile cannot always guarantee the bearing capability of the slipper and the lubrication in the gap is compromised for some critical operating conditions.
X