Refine Your Search

Search Results

Viewing 1 to 4 of 4
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

The Application of New Approaches to the Analysis of Deposits from the Jet Fuel Thermal Oxidation Tester (JFTOT)

2017-10-08
2017-01-2293
Studies of diesel system deposits continue to be the subject of interest and publications worldwide. The introduction of high pressure common rail systems resulting in high fuel temperatures in the system with the concomitant use of fuels of varying solubilizing ability (e.g. ULSD and FAME blends) have seen deposits formed at the tip of the injector and on various internal injector components. Though deposit control additives (DCAs) have been successfully deployed to mitigate the deposit formation, work is still required to understand the nature and composition of these deposits. The study of both tip and internal diesel injector deposits (IDID) has seen the development of a number of bench techniques in an attempt to mimic field injector deposits in the laboratory. One of the most used of these is the Jet Fuel Thermal Oxidation Tester or JFTOT (ASTM D3241).
Journal Article

A Novel Technique for Investigating the Characteristics and History of Deposits Formed Within High Pressure Fuel Injection Equipment

2012-09-10
2012-01-1685
The recent developments in diesel fuel injection equipment coupled with the moves in the US to using ULSD and biodiesel blends has seen an increase in the number of reports from both engine manufacturers and fleet operators regarding fuel system deposit formation issues. These deposits not only form on and within the fuel injectors but they also form elsewhere in the fuel system, due to fuel recirculation. These will eventually accumulate in the fuel filters. Historically, diesel fuel system deposits have been attributed to contamination of the fuel or the degradation of the fuel with age. Such age related degradation has been attributed to oxidation of the fuel via well documented pathways, although the initiation of this process is still poorly understood. Papers at recent SAE meetings in Florence, San Antonio, Rio de Janeiro, San Diego and Kyoto have addressed many of these causes.
Technical Paper

Information on the Aromatic Structure of Internal Diesel Injector Deposits From Time of Flight Secondary Ion Mass Spectrometry (ToF-SIMS)

2014-04-01
2014-01-1387
The nature of internal diesel injector deposits (IDID) continues to be of importance to the industry, with field problems such as injector sticking, loss of power, increased emissions and fuel consumption being found. The deposits have their origins in the changes in emission regulations that have seen increasingly severe conditions experienced by fuels because of high temperatures and high pressures of modern common rail systems and the introduction of low sulphur fuels. Furthermore, the effect of these deposits is amplified by the tight engineering tolerances of the moving parts of such systems. The nature and thus understanding of such deposits is necessary to both minimising their formation and the development of effective diesel deposit control additives (DCA).
X