Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Applying the Intent of Federal Motor Vehicle Safety Standards to Vehicles Modified for the Use of Disabled Persons

1992-02-01
920563
Since 1966 the federal government, through the National Highway Traffic Safety Administration, has promulgated regulations governing the crash safety of motor vehicles, with particular attention to passenger cars. However, during the next four years, most of the regulations will also apply to light trucks and vans. There are now 53 Federal Motor Vehicle Safety Standards (FMVSS). These standards primarily regulate the safety of new vehicles. For many disabled persons, especially those confined to wheelchairs, vehicles must be extensively modified to allow them to drive, or to ride as passengers. The objective of this paper is to examine the safety level intended to be afforded to able bodied persons by the crashworthiness FMVSS and to make observations on the special requirements of modified vehicles to afford the same level of safety to disabled persons. We will emphasize the safety needs of those who use vans since vans are the vehicles most extensively modified.
Technical Paper

The Effect of Thermal Cycling on the Mechanical Properties of the Macro-Interface in Squeeze Cast Composites

1994-03-01
940810
Selectively reinforced, squeeze cast automotive pistons contain a boundary between the reinforced and unreinforced regions. This boundary is known as the macro-interface. Due to the difference in CTE between the composite and unreinforced matrix, the macro-interface can be the site of residual stress formation during cooling from the casting or heat treatment temperature. Subsequent thermal exposure, particularly thermal cycling, may produce cyclic stress at this interface causing it to experience fatigue. It has been found that matrix precipitates at the macro-interface and the aging behavior of the matrix also may play a role in defining the strength of the macro-interface during thermal cycling conditions.
Technical Paper

Reproducing the Structural Intrusion of Frontal Offset Crashes in the Laboratory Sled Test Environment

1995-02-01
950643
The response and risk of injury for occupants in frontal crashes are more severe when structural deformation occurs in the vehicle interior. To reproduce this impact environment in the laboratory, a sled system capable of producing structural intrusion in the footwell region has been developed. The system couples the hydraulic decelerator of the sled to actuator pistons attached to the toepan and floorpan structure of the buck. Characterization of the footwell intrusion event is based on developing a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Preliminary sled tests with the system indicate that it is capable of simulating a complex sequence of toepan/floorpan translations and rotations.
Technical Paper

The Flow Field Inside an Automotive Torque Converter: Laser Velocimeter Measurements

1996-02-01
960721
The 3-D flow field inside an automotive torque converter was measured using laser velocimetry. For the tests, a torque converter completely machined from Plexiglas was operated at the 0.065 and 0.800 turbine/pump speed ratio, and detailed velocities were measured in 13 planes throughout the torque converter. Digital shaft encoder information was used to correlate measured velocities with the pump/turbine angular positions to generate blade-to-blade profiles, 3-D vector plots, and contour through flow plots. Results showed large flow separation regions, jet/wake flows, circulatory secondary flows, and significant flow unsteadiness in all three torque converter elements (pump, turbine, and stator). From the measured velocities, torque converter performance parameters such as mass flows, input/output torque, element incidence angles, slip factors, and vorticities were determined.
Technical Paper

Experimental Devices to Simulate Toepan and Floorpan Intrusion

1997-02-24
970574
Two sled systems capable of producing structural intrusion in the footwell region of an automobile have been developed. The first, System A, provides translational toepan intrusion using actuator pistons to drive the footwell structure of the test buck. These actuator pistons are coupled to the hydraulic decelerator of the test sled and are powered by hydraulic energy from the impact event. Resulting footwell intrusion is characterized using a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Sled tests with System A indicate that it is capable of accurately and repeatably simulating toepan/floorpan intrusion into the occupant footwell. Test results, including a comparison of lower extremity response between intrusion sled tests and no intrusion sled tests, indicate that this system is capable of repeatable, controlled structural intrusion during a sled test impact.
Technical Paper

A Pneumatic Airbag Deployment System for Experimental Testing

1997-02-24
970124
This paper examines an originally designed airbag deployment system for use in static experimental testing. It consists of a pressure vessel and valve arrangement with pneumatic and electric controls. A piston functions like a valve when operated and is activated pneumatically to release the air in the tank. Once released, the air fills the attached airbag. The leading edge velocity can be controlled by the initial pressure in the tank, which can range up to 960 kPa. Three different test configurations were studied, which resulted in leading edge deployment speeds of approximately 20 m/s, 40 m/s, and 60 m/s. In experiments using this system, seven types of airbags were tested that differed in their material, coating, and presence of a tether. Data for each series of tests is provided. High speed video and film were used to record the deployments, and a pressure transducer measured the airbag's internal pressure.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

2005-04-11
2005-01-1905
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Influence of Vehicle Body Type on Pedestrian Injury Distribution

2005-04-11
2005-01-1876
Pedestrian impact protection has been a growing area of research over the past twenty or more years. The results from many studies have shown the importance of providing protection to vulnerable road users as a means of reducing roadway fatalities. Most of this research has focused on the vehicle fleet as a whole in datasets that are dominated by passenger cars (cars). Historically, the influence of vehicle body type on injury distribution patterns for pedestrians has not been a primary research focus. In this study we used the Pedestrian Crash Data Study (PCDS) database of detailed pedestrian crash investigations to identify how injury patterns differ for pedestrians struck by light trucks, vans, and sport utility vehicles (LTVs) from those struck by cars. AIS 2+ and 3+ injuries for each segment of vehicles were mapped back to both the body region of the pedestrian injured and the vehicle source linked to that injury in the PCDS database.
Technical Paper

A Method for the Experimental Investigation of Acceleration as a Mechanism of Aortic Injury

2005-04-11
2005-01-0295
Rupture of the thoracic aorta is a leading cause of rapid fatality in automobile crashes, but the mechanism of this injury remains unknown. One commonly postulated mechanism is a differential motion of the aortic arch relative to the heart and its neighboring vessels caused by high-magnitude acceleration of the thorax. Recent Indy car crash data show, however, that humans can withstand accelerations exceeding 100 g with no injury to the thoracic vasculature. This paper presents a method to investigate the efficacy of acceleration as an aortic injury mechanism using high-acceleration, low chest deflection sled tests. The repeatability and predictability of the test method was evaluated using two Hybrid III tests and two tests with cadaver subjects. The cadaver tests resulted in sustained mid-spine accelerations of up to 80 g for 20 ms with peak mid-spine accelerations of up to 175 g, and maximum chest deflections lower than 11% of the total chest depth.
Technical Paper

Intelligent Selection of Materials for Brake Linings

2000-10-20
2000-01-2779
Friction materials used in the brake linings of automobiles, trucks, buses and other vehicles are required to satisfy a number of performance demands: they must provide a dependable, consistent level of friction, excellent resistance to wear, adequate heat dissipation, structural integrity, low cost and, if possible, light weight. No single material can meet all of these often conflicting performance criteria, and as a consequence, multiphase composites have been developed, consisting typically of a dozen or more different materials. The choice of materials is crucial in determining the performance attained, yet to date, braking material compositions have been developed largely on the basis of empirical observations.
Technical Paper

Upper Extremity Interaction With a Helicopter Side Airbag: Injury Criteria for Dynamic Hyperextension of the Female Elbow Joint

2004-11-01
2004-22-0007
This paper describes a three part analysis to characterize the interaction between the female upper extremity and a helicopter cockpit side airbag system and to develop dynamic hyperextension injury criteria for the female elbow joint. Part I involved a series of 10 experiments with an original Army Black Hawk helicopter side airbag. A 5th percentile female Hybrid III instrumented upper extremity was used to demonstrate side airbag upper extremity loading. Two out of the 10 tests resulted in high elbow bending moments of 128 Nm and 144 Nm. Part II included dynamic hyperextension tests on 24 female cadaver elbow joints. The energy source was a drop tower utilizing a three-point bending configuration to apply elbow bending moments matching the previously conducted side airbag tests. Post-test necropsy showed that 16 of the 24 elbow joint tests resulted in injuries.
Journal Article

Occupant Kinematics and Injury Response in Steer Maneuver-Induced Furrow Tripped Rollover Testing

2015-04-14
2015-01-1478
Occupant kinematics during rollover motor vehicle collisions have been investigated over the past thirty years utilizing Anthropomorphic Test Devices (ATDs) in various test methodologies such as dolly rollover tests, CRIS testing, spin-fixture testing, and ramp-induced rollovers. Recent testing has utilized steer maneuver-induced furrow tripped rollovers to gain further understanding of vehicle kinematics, including the vehicle's pre-trip motion. The current study consisted of two rollover tests utilizing instrumented test vehicles and instrumented ATDs to investigate occupant kinematics and injury response throughout the entire rollover sequences, from pre-trip vehicle motion to the position of rest. The two steer maneuver-induced furrow tripped rollover tests utilized a mid-sized 4-door sedan and a full-sized crew-cab pickup truck. The pickup truck was equipped with seatbelt pretensioners and rollover-activated side curtain airbags (RSCAs).
X