Refine Your Search

Topic

Author

Search Results

Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Technical Paper

The Interaction of Air Bags with Upper Extremities

1997-11-12
973324
Recently there has been a greater awareness of the increased risk of certain injuries associated with air bag deployment, especially the risks to small occupants, often women. These injuries include serious eye and upper extremity injuries and even fatalities. This study investigates the interaction of a deploying air bag with cadaveric upper extremities in a typical driving posture; testing concentrates on female occupants. The goals of this investigation are to determine the risk of upper extremity injury caused by primary contact with a deploying air bag and to elucidate the mechanisms of these upper extremity injuries. Five air bags were used that are representative of a wide range of air bag ‘aggressivities’ in the current automobile fleet. This air bag ‘aggressivity’ was quantified using the response of a dummy forearm under air bag deployment.
Technical Paper

Wear Mechanism in Cummins M-11 High Soot Diesel Test Engines

1998-05-04
981372
The Cummins M-11 high soot diesel engine test is a key tool in evaluating lubricants for the new PC-7 (CH-4) performance category. M-11 rocker arms and crossheads from tests with a wide range of lubricant performance were studied by surface analytical techniques. Abrasive wear by primary soot particles is supported by the predominant appearance of parallel grooves on the worn parts with their widths matching closely the primary soot particle sizes. Soot abrasive action appears to be responsible for removing the protective antiwear film and, thus, abrades against metal parts as well. Subsequent to the removal of the antiwear film, carbide particles, graphite nodules, and other wear debris are abraded, either by soot particles or sliding metal-metal contact, from the crosshead and rocker arm metal surfaces. These particles further accelerate abrasive wear. In addition to abrasive wear, fatigue wear was evident on the engine parts.
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Displacement Measurements in the Hybrid III Chest

2001-03-05
2001-01-0118
This paper presents an analysis of the displacement measurement of the Hybrid III 50th percentile male dummy chest in quasistatic and dynamic loading environments. In this dummy, the sternal chest deformation is typically characterized using a sliding chest potentiometer, originally designed to measure inward deflection in the central axis of the dummy chest. Loading environments that include other modes of deformation, such as lateral translations or rotations, can create a displacement vector that is not aligned with this sensitive axis. To demonstrate this, the dummy chest was loaded quasistatically and dynamically in a series of tests. A string potentiometer array, with the capability to monitor additional deflection modes, was used to supplement the measurement of the chest slider.
Technical Paper

Parametric study of side impact thoracic injury criteria using the MADYMO human body model

2001-06-04
2001-06-0182
This paper presents a computational study of the effects of three parameters on the resulting thoracic injury criteria in side impacts. The parameters evaluated are a) door velocity-time (V-t) profile, b) door interior padding modulus, and c) initial door-to-occupant offset. Regardless of pad modulus, initial offset, or the criterion used to assess injury, higher peak door velocity is shown to correspond with more severe injury. Injury outcome is not, however, found to be sensitive to the door velocity at the time of first occupant contact. A larger initial offset generally is found to result in lower injury, even when the larger offset results in a higher door velocity at occupant contact, because the increased offset results in contact later in the door V-t profile - closer to the point at which the door velocity begins to decrease. Cases of contradictory injury criteria trends are identified, particularly in response to changes in the pad modulus.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Development and Validation of an Occupant Lower Limb Finite Element Model

2011-04-12
2011-01-1128
More than half of occupant lower extremity (LEX) injuries due to automotive frontal crashes are in the knee-thigh-hip (KTH) complex. To design the injury countermeasures for the occupant LEX, first the biomechanical and injury responses of the occupant LEX components during automotive frontal crashes should be known. The objective of this study is to develop a detailed biofidelic occupant LEX Finite Element (FE) model based on the component surfaces reconstructed from the medical image data of a 50th percentile male volunteer in a sitting posture. Both volumetric (unstructured) and structural mesh methods were used to generate the solid elements (mostly hexahedral type) to enhance the model simulation accuracy. The FE model includes the femur, tibia, fibula, patella, cartilage, ligaments, menisci, patella tendon, flesh, muscle, and skin. The constitutive material models and their corresponding parameters were defined based on literature data.
Technical Paper

The Effect of Thermal Cycling on the Mechanical Properties of the Macro-Interface in Squeeze Cast Composites

1994-03-01
940810
Selectively reinforced, squeeze cast automotive pistons contain a boundary between the reinforced and unreinforced regions. This boundary is known as the macro-interface. Due to the difference in CTE between the composite and unreinforced matrix, the macro-interface can be the site of residual stress formation during cooling from the casting or heat treatment temperature. Subsequent thermal exposure, particularly thermal cycling, may produce cyclic stress at this interface causing it to experience fatigue. It has been found that matrix precipitates at the macro-interface and the aging behavior of the matrix also may play a role in defining the strength of the macro-interface during thermal cycling conditions.
Technical Paper

Reproducing the Structural Intrusion of Frontal Offset Crashes in the Laboratory Sled Test Environment

1995-02-01
950643
The response and risk of injury for occupants in frontal crashes are more severe when structural deformation occurs in the vehicle interior. To reproduce this impact environment in the laboratory, a sled system capable of producing structural intrusion in the footwell region has been developed. The system couples the hydraulic decelerator of the sled to actuator pistons attached to the toepan and floorpan structure of the buck. Characterization of the footwell intrusion event is based on developing a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Preliminary sled tests with the system indicate that it is capable of simulating a complex sequence of toepan/floorpan translations and rotations.
Technical Paper

The Flow Field Inside an Automotive Torque Converter: Laser Velocimeter Measurements

1996-02-01
960721
The 3-D flow field inside an automotive torque converter was measured using laser velocimetry. For the tests, a torque converter completely machined from Plexiglas was operated at the 0.065 and 0.800 turbine/pump speed ratio, and detailed velocities were measured in 13 planes throughout the torque converter. Digital shaft encoder information was used to correlate measured velocities with the pump/turbine angular positions to generate blade-to-blade profiles, 3-D vector plots, and contour through flow plots. Results showed large flow separation regions, jet/wake flows, circulatory secondary flows, and significant flow unsteadiness in all three torque converter elements (pump, turbine, and stator). From the measured velocities, torque converter performance parameters such as mass flows, input/output torque, element incidence angles, slip factors, and vorticities were determined.
Technical Paper

Experimental Devices to Simulate Toepan and Floorpan Intrusion

1997-02-24
970574
Two sled systems capable of producing structural intrusion in the footwell region of an automobile have been developed. The first, System A, provides translational toepan intrusion using actuator pistons to drive the footwell structure of the test buck. These actuator pistons are coupled to the hydraulic decelerator of the test sled and are powered by hydraulic energy from the impact event. Resulting footwell intrusion is characterized using a toepan pulse analogous to the acceleration pulse used to characterize sled and vehicle decelerations. Sled tests with System A indicate that it is capable of accurately and repeatably simulating toepan/floorpan intrusion into the occupant footwell. Test results, including a comparison of lower extremity response between intrusion sled tests and no intrusion sled tests, indicate that this system is capable of repeatable, controlled structural intrusion during a sled test impact.
Technical Paper

A Pneumatic Airbag Deployment System for Experimental Testing

1997-02-24
970124
This paper examines an originally designed airbag deployment system for use in static experimental testing. It consists of a pressure vessel and valve arrangement with pneumatic and electric controls. A piston functions like a valve when operated and is activated pneumatically to release the air in the tank. Once released, the air fills the attached airbag. The leading edge velocity can be controlled by the initial pressure in the tank, which can range up to 960 kPa. Three different test configurations were studied, which resulted in leading edge deployment speeds of approximately 20 m/s, 40 m/s, and 60 m/s. In experiments using this system, seven types of airbags were tested that differed in their material, coating, and presence of a tether. Data for each series of tests is provided. High speed video and film were used to record the deployments, and a pressure transducer measured the airbag's internal pressure.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

2005-04-11
2005-01-1905
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Deployment of Air Bags into the Thorax of an Out-of-Position Dummy

1999-03-01
1999-01-0764
The air bag has proven effective in reducing fatalities in frontal crashes with estimated decreases ranging from 11% to 30% depending on the size of the vehicle [IIHS-1995, Kahane-1996]. At the same time, some air bag designs have caused fatalities when front-seat passengers have been in close proximity to the deploying air bag [Kleinberger-1997]. The objective of this study was to develop an accurate and repeatable out-of-position test fixture to study the deployment of air bags into out-of-position occupants. Tests were performed with a 5th percentile female Hybrid III dummy and studied air bag loading on the thorax using draft ISO-2 out-of-position (OOP) occupant positioning. Two different interpretations of the ISO-2 positioning were used in this study. The first, termed Nominal ISO-2, placed the chin on the steering wheel with the spine parallel to the steering wheel.
Technical Paper

Reducing the Risk of Driver Injury from Common Steering Control Devices in Frontal Collisions

1999-03-01
1999-01-0759
Steering control devices are used by people who have difficulty gripping the steering wheel. These devices have projections that may extend up to 14 cm toward the occupant. Testing indicated that contact with certain larger steering control devices with tall rigid projections could severely injure a driver in a frontal collision. In order to reduce this injury risk, an alternative, less injurious design was developed and tested. This design, which included replacing unyielding aluminum projections with compliant plastic ones, produced significantly lower peak contact pressure and less damage to the chest of a cadaver test subject, while maintaining the strength necessary to be useful.
Technical Paper

Rollover Initiation Simulations for Designing Rollover Initiation Test System (RITS)

2014-04-01
2014-01-0530
Some rollover test methods, which impose a touchdown condition on a test vehicle, have been developed to study vehicle crashworthiness and occupant protection in rollover crashes. In ground-tripped rollover crashes, speed, steering maneuver, braking, vehicle inertial and geometric properties, topographical and road design characteristics, and soil type can all affect vehicle touchdown conditions. It is presumed that while there may be numerous possible combinations of kinematic metrics (velocity components and orientation) at touchdown, there are also numerous combinations of metrics that are not likely to occur in rollover crashes. To determine a realistic set of touchdown conditions to be used in a vehicle rollover crash test, a lateral deceleration sled-based non-destructive rollover initiation test system (RITS) with a fully programmable deceleration pulse is in development.
Technical Paper

Evaluation of Biofidelity of Side Impact Computational Surrogates (ES-2re, WorldSID, GHBMC)

2014-04-01
2014-01-0541
The goal of this study was to evaluate the biofidelity of the three computational surrogates (GHBMC model, WorldSID model, and the FTSS ES-2re model) under the side impact rigid wall sled test condition. The responses of the three computational surrogates were compared to those of post mortem human surrogate (PMHS) and objectively evaluated using the correlation and analysis (CORA) rating method. Among the three computational surrogates, the GHBMC model showed the best biofidelity based on the CORA rating score (GHBMC =0.65, WorldSID =0.57, FTSS ES-2re =0.58). In general, the response of the pelvis of all the models showed a good correlation with the PMHS response, while the response of the shoulder and the lower extremity did not. In terms of fracture prediction, the GHBMC model overestimated bone fracture.
Technical Paper

Rollover Testing of a Sport Utility Vehicle (SUV) with an Inertial Measurement Unit (IMU)

2015-04-14
2015-01-1475
A follow-up case study on rollover testing with a single full-size sport utility vehicle (SUV) was conducted under controlled real-world conditions. The purpose of this study was to conduct a well-documented rollover event that could be utilized in evaluating various methods and techniques over the phases associated with rollover accidents. The phases documented and discussed, inherent to rollovers, are: pre-trip, trip, and rolling phases. With recent advances in technology, new devices and techniques have been designed which improve the ability to capture and document the unpredictable dynamic events surrounding vehicle rollovers. One such device is an inertial measurement unit (IMU), which utilizes GPS technology along with integrated sensors to report and record measured dynamic parameters real-time. The data obtained from a RT-4003 IMU device are presented and compared along with previous test data and methodology.
Technical Paper

The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact

2014-11-10
2014-22-0014
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay.
X