Refine Your Search

Topic

Author

Search Results

Journal Article

External Biofidelity Evaluation of Pedestrian Leg-Form Impactors

2017-03-28
2017-01-1450
Current state-of-the-art vehicles implement pedestrian protection features that rely on pedestrian detection sensors and algorithms to trigger when impacting a pedestrian. During the development phase, the vehicle must “learn” to discriminate pedestrians from the rest of potential impacting objects. Part of the training data used in this process is often obtained in physical tests utilizing legform impactors whose external biofidelity is still to be evaluated. This study uses THUMS as a reference to assess the external biofidelity of the most commonly used impactors (Flex-PLI, PDI-1 and PDI-2). This biofidelity assessment was performed by finite element simulation measuring the bumper beam forces exerted by each surrogate on a sedan and a SUV. The bumper beam was divided in 50 mm sections to capture the force distribution in both vehicles. This study, unlike most of the pedestrian-related literature, examines different impact locations and velocities.
Journal Article

Thermal Modeling of Power Steering System Performance

2008-04-14
2008-01-1432
Power steering systems provide significant design challenges. They are detrimental to fuel economy since most require the continuous operation of a hydraulic pump. This generates heat that must be dissipated by fluid lines and heat exchangers. This paper presents a simple one-dimensional transient model for power steering components. The model accounts for the pump power, heat dissipation from fluid lines, the power steering cooler, and the influence of radiation heat from exhaust system components. The paper also shows how to use a transient thermal model of the entire system to simulate the temperatures during cyclic operation of the system. The implications to design, drive cycle simulation, and selection of components are highlighted.
Journal Article

Computer Simulation of Automotive Air Conditioning - Components, System, and Vehicle: Part 2

2008-04-14
2008-01-1433
In 1972, the first SAE paper describing the use of computer simulation as a design tool for automotive air conditioning was written by these authors. Since then, many such simulations have been used and new tools such as CFD have been applied to this problem. This paper reviews the work over that past 35 years and presents several of the improvements in the basic component and system models that have occurred. The areas where “empirical” information is required for model support and the value of CFD cabin and external air flow modeling are also discussed.
Technical Paper

Viscous Fan Drive Model for Robust Cooling Air Flow Simulation

2007-04-16
2007-01-0595
One Dimensional models for front end air flows through the cooling system package are very useful for evaluating the effects of component and front end geometry changes. To solve such models for the air flow requires a robust iterative process that involves a number of non-linear sub-models. The cooling fan (s) constitute a major part of the difficulty, especially when they employ a viscous or “thermal” fan drive. This drive varies the torque coupling between the input and output shafts based on the radiator outlet air temperature. The coupling is achieved by viscous shear between two grooved disks and is regulated by a bimetal strip valve that varies the amount of fluid between the disks. This paper presents a mathematical model by which the input/output speed ratio may be determined as a function of the air temperature and input speed. Coefficients in the model are estimated from standard supplier performance information.
Technical Paper

Robust Compressor Model for AC System Simulation

2007-04-16
2007-01-0596
Simple component models are advantageous when simulating vehicle AC systems so that overall model complexity and computation time can be minimized. These models must be robust enough to avoid instability in the iteration method used for determining the AC system operating or “balance” point. Simplicity and stability are especially important when the AC system model is coupled with a vehicle interior model for studies of transient performance because these are more computationally intensive. This paper presents a semi-empirical modeling method for compressors based on dimensionless parameters. Application to some sample compressor data is illustrated. The model equations are simple to employ and will not introduce significant stability problems when used as part of a system simulation.
Technical Paper

Constitutive Modeling of Polymers Subjected to High Strain Rates

2001-03-05
2001-01-0472
A biaxial test procedure is used to assess the constitutive properties of polymers in tension. The constitutive constants are derived for high strain rate applications such as those associated with crashworthiness studies. The test procedure is used in conjunction with a time- and strain-dependent quasi-linear viscoelastic constitutive law consisting of a Mooney-Rivlin formulation combined with Maxwell elements. The procedure is demonstrated by describing the stress vs. strain relationship of a rubber specimen subjected to a step-relaxation input. The constitutive equation is transformed from a nonlinear convolution integral to a set of first order differential equations. These equations, with the appropriate boundary conditions, are solved numerically to obtain transient stresses in two principal directions. Material constants for use in the explicit LS-Dyna non-linear finite element code are provided.
Technical Paper

A Comparative Evaluation of Pedestrian Kinematics and Injury Prediction for Adults and Children upon Impact with a Passenger Car

2004-03-08
2004-01-1606
Studies show that the pedestrian population at high risk of injury consists of both young children and adults. The goal of this study is to gain understanding in the mechanisms that lead to injuries for children and adults. Multi-body pedestrian human models of two specific anthropometries, a 6year-old child and a 50th percentile adult male, are applied. A vehicle model is developed that consists of a detailed rigid finite element mesh, validated stiffness regions, stiff structures underlying the hood and a suspension model. Simulations are performed in a test matrix where anthropometry, impact speed and impact location are variables. Bumper impact occurs with the tibia of the 50th percentile adult male and with the thigh of the 6-year-old child. The head of a 50th percentile male impacts the lower windshield, while the 6-year-old child's head impacts the front part of the hood.
Technical Paper

A Multi-Body Computational Study of the Kinematic and Injury Response of a Pedestrian with Variable Stance upon Impact with a Vehicle

2004-03-08
2004-01-1607
This research investigates the variation of pedestrian stance in pedestrian-automobile impact using a validated multi-body vehicle and human model. Detailed vehicle models of a small family car and a sport utility vehicle (SUV) are developed and validated for impact with a 50th percentile human male anthropometric ellipsoid model, and different pedestrian stances (struck limb forward, feet together, and struck limb backward) are investigated. The models calculate the physical trajectory of the multi-body models including head and torso accelerations, as well as pelvic force loads. This study shows that lower limb orientation during a pedestrian-automobile impact plays a dominant role in upper body kinematics of the pedestrian. Specifically, stance has a substantial effect on the subsequent impacts of the head and thorax with the vehicle. The variation in stance can change the severity of an injury incurred during an impact by changing the impact region.
Technical Paper

Analysis of upper extremity response under side air bag loading

2001-06-04
2001-06-0016
Computer simulations, dummy experiments with a new enhanced upper extremity, and small female cadaver experiments were used to analyze the small female upper extremity response under side air bag loading. After establishing the initial position, three tests were performed with the 5th percentile female hybrid III dummy, and six experiments with small female cadaver subjects. A new 5th percentile female enhanced upper extremity was developed for the dummy experiments that included a two-axis wrist load cell in addition to the existing six-axis load cells in both the forearm and humerus. Forearm pronation was also included in the new dummy upper extremity to increase the biofidelity of the interaction with the handgrip. Instrumentation for both the cadaver and dummy tests included accelerometers and magnetohydrodynamic angular rate sensors on the forearm, humerus, upper and lower spine.
Technical Paper

Geometrical Personalization of Pedestrian Finite Element Models Using Morphing Increases the Biofidelity of Their Impact Kinematics

2016-04-05
2016-01-1506
Pedestrian finite element models (PFEM) are used to investigate and predict the injury outcomes from vehicle-pedestrian impact. As postmortem human surrogates (PMHS) differ in anthropometry across subjects, it is believed that the biofidelity of PFEM cannot be properly evaluated by comparing a generic anthropometry model against the specific PMHS test data. Global geometric personalization can scale the PFEM geometry to match the height and weight of a specific PMHS, while local geometric personalization via morphing can modify the PFEM geometry to match specific PMHS anatomy. The goal of the current study was to evaluate the benefit of morphed PFEM compared to globally-scaled and generic PFEM by comparing the kinematics against PMHS test results. The AM50 THUMS PFEM (v4.01) was used as a baseline for anthropometry, and personalized PFEM were created to the anthropometric specifications of two obese PMHS used in a previous pedestrian impact study using a mid-size sedan.
Technical Paper

Influence of Driver Input on the Touchdown Conditions and Risk of Rollover in Case of Steering Induced Soil-Trip Rollover Crashes

2016-04-05
2016-01-1514
Some rollover testing methodologies require specification of vehicle kinematic parameters including travel speed, vertical velocity, roll rate, and pitch angle, etc. at the initiation of vehicle to ground contact, which have been referred to as touchdown conditions. The complexity of the vehicle, as well as environmental and driving input characteristics make prediction of realistic touchdown conditions for rollover crashes, and moreover, identification of parameter sensitivities of these characteristics, is difficult and expensive without simulation tools. The goal of this study was to study the sensitivity of driver input on touchdown parameters and the risk of rollover in cases of steering-induced soil-tripped rollovers, which are the most prevalent type of rollover crashes. Knowing the range and variation of touchdown parameters and their sensitivities would help in picking realistic parameters for simulating controlled rollover tests.
Technical Paper

Comprehensive Computational Rollover Sensitivity Study Part 2: Influence of Vehicle, Crash, and Occupant Parameters on Head, Neck, and Thorax Response

2011-04-12
2011-01-1115
Fatalities resulting from vehicle rollover events account for over one-third of all U.S. motor vehicle occupant fatalities. While a great deal of research has been directed towards the rollover problem, few studies have attempted to determine the sensitivity of occupant injury risk to variations in the vehicle (roof strength), crash (kinematic conditions at roof-to-ground contact), and occupant (anthropometry, position and posture) parameters that define the conditions of the crash. A two-part computational study was developed to examine the sensitivity of injury risk to changes in these parameters. The first part of this study, the Crash Parameter Sensitivity Study (CPSS), demonstrated the influence of parameters describing the vehicle and the crash on vehicle response using LS-DYNA finite element (FE) simulations.
Technical Paper

A Simulation-Based Calibration and Sensitivity Analysis of a Finite Element Model of THOR Head-Neck Complex

2011-04-12
2011-01-1123
The THOR-NT dummy has been developed and continuously improved by NHTSA to provide automotive manufacturers an advanced tool that can be used to assess the injury risk of vehicle occupants in crash tests. With the recent improvements of finite element (FE) technology and the increase of computational power, a validated FE model of THOR may provide an efficient tool for the design optimization of vehicles and their restraint systems. The main goal of this study was to improve biofidelity of a head-neck FE model of THOR-NT dummy. A three-dimensional FE model of the head and neck was developed in LS-Dyna based on the drawings of the THOR dummy. The material properties of deformable parts and the joints properties between rigid parts were assigned initially based on data found in the literature, and then calibrated using optimization techniques.
Technical Paper

Open-Loop Chestbands for Dynamic Deformation Measurements

1998-02-23
980857
Originally designed for measuring closed-loop contours such as those around a human thorax, the External Peripheral Instrument for Deformation Measurement (EPIDM), or chestband, was developed to improve the measurement of dummy and cadaver thoracic response during impact. In the closed-loop configuration, the chestband wraps around on itself forming a closed contour. This study investigates the use of the chestband for dynamic deformation measurements in an open-loop configuration. In the open-loop configuration, the chestband does not generally form a closed contour. This work includes enhanced procedures and algorithms for the calculation of chestband deformation contours including the determination of static and dynamic chestband contours under several boundary conditions.
Technical Paper

Effects of Humidity Fluctuations on Adsorption Columns Used for Air Purification in Closed Environments

1996-07-01
961358
Effects of a cabin-level humidity upset on an activated carbon column used for adsorption of trace compounds from air are examined through a series of experiments and computer simulations. Breakthrough curves measured for dichloromethane in the presence of water indicate that a rapid increase in relative humidity can displace large quantities of dichloromethane from the adsorbed phase resulting in effluent streams containing more than 20 times the feed concentration. Additionally, the breakthrough time for organic compounds is reduced significantly at high relative humidity. Numerical simulation results show favorable qualitative agreement with measured breakthrough curves, yet do not consistently predict accurate water or dichloromethane loadings at all experimental conditions.
Technical Paper

Cooling Fan Modeling to Support Robust AC/Cooling System Simulation

2005-04-11
2005-01-1905
Advanced design of modern engine cooling and vehicle HVAC components involves sophisticated simulation. In particular, front end air flow models must be able to cover the complete range of conditions from idle to high road speeds involving multiple fans of varying types both powered and unpowered. This paper presents a model for electric radiator cooling fans which covers the complete range of powered and unpowered (freewheel) operation. The model applies equally well to mechanical drive fans.
Technical Paper

Intelligent Selection of Materials for Brake Linings

2000-10-20
2000-01-2779
Friction materials used in the brake linings of automobiles, trucks, buses and other vehicles are required to satisfy a number of performance demands: they must provide a dependable, consistent level of friction, excellent resistance to wear, adequate heat dissipation, structural integrity, low cost and, if possible, light weight. No single material can meet all of these often conflicting performance criteria, and as a consequence, multiphase composites have been developed, consisting typically of a dozen or more different materials. The choice of materials is crucial in determining the performance attained, yet to date, braking material compositions have been developed largely on the basis of empirical observations.
Technical Paper

Detached Eddy Simulation on a Swept Hybrid Model in the IRT

2015-06-15
2015-01-2122
In recent years, there has been a growing desire to incorporate computational methods into aircraft icing certification practices. To improve understanding of ice shapes, a new experimental program in the NASA Icing Research Tunnel (IRT) will investigate swept hybrid models which are very large relative to the test section and are intended to operate at high lift coefficients. The present computations were conducted to help plan the experiments and to ascertain any effects of flow separation and unsteady forces. As they can be useful in robustly and accurately predicting large separation regions and capturing flow unsteadiness, a Detached Eddy Simulation (DES) approach has been adopted for simulating the flow over these large high-lift wing sections. The DES methodology was first validated using experimental data from an unswept NACA 0012 airfoil with leading-edge ice accretion, showing reasonable performance.
Technical Paper

The Contribution of Pre-impact Spine Posture on Human Body Model Response in Whole-body Side Impact

2014-11-10
2014-22-0014
The objective of the study was to analyze independently the contribution of pre-impact spine posture on impact response by subjecting a finite element human body model (HBM) to whole-body, lateral impacts. Seven postured models were created from the original HBM: one matching the standard driving posture and six matching pre-impact posture measured for each of six subjects tested in previously published experiments. The same measurements as those obtained during the experiments were calculated from the simulations, and biofidelity metrics based on signals correlation were established to compare the response of HBM to that of the cadavers. HBM responses showed good correlation with the subject response for the reaction forces, the rib strain (correlation score=0.8) and the overall kinematics. The pre-impact posture was found to greatly alter the reaction forces, deflections and the strain time histories mainly in terms of time delay.
Technical Paper

A Madymo Model of the Foot and Leg for Local Impacts

1999-10-10
99SC12
It has been reported that lower extremity injuries represent a measurable portion of all moderate-to-severe automobile crash- related injuries. Thus, a simple tool to assist with the design of leg and foot injury countermeasures is desirable. The objective of this study is to develop a mathematical model which can predict load propagation and kinematics of the foot and leg in frontal automotive impacts. A multi-body model developed at the University of Virginia and validated for blunt impact to the whole foot has been used as basis for the current work. This model includes representations of the tibia, fibula, talus, hindfoot, midfoot and forefoot bones. Additionally, the model provides a means for tensioning the Achilles tendon. In the current study, the simulations conducted correspond to tests performed by the Transport Research Laboratory and the University of Nottingham on knee-amputated cadaver specimens.
X